| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1136 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: cdlema1N 39793 paddasslem15 39836 4atex2-0aOLDN 40080 4atex3 40083 cdleme19b 40306 cdleme19d 40308 cdleme19e 40309 cdleme20d 40314 cdleme20f 40316 cdleme20g 40317 cdleme21d 40332 cdleme21e 40333 cdleme22cN 40344 cdleme22e 40346 cdleme22f2 40349 cdleme26e 40361 cdleme28a 40372 cdleme37m 40464 cdlemg28b 40705 cdlemk3 40835 cdlemk12 40852 cdlemk12u 40874 cdlemkoatnle-2N 40877 cdlemk13-2N 40878 cdlemkole-2N 40879 cdlemk14-2N 40880 cdlemk15-2N 40881 cdlemk16-2N 40882 cdlemk17-2N 40883 cdlemk18-2N 40888 cdlemk19-2N 40889 cdlemk7u-2N 40890 cdlemk11u-2N 40891 cdlemk20-2N 40894 cdlemk30 40896 cdlemk23-3 40904 cdlemk24-3 40905 |
| Copyright terms: Public domain | W3C validator |