| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39913 paddasslem15 39956 4atex2-0aOLDN 40200 4atex3 40203 cdleme19b 40426 cdleme19d 40428 cdleme19e 40429 cdleme20d 40434 cdleme20f 40436 cdleme20g 40437 cdleme21d 40452 cdleme21e 40453 cdleme22cN 40464 cdleme22e 40466 cdleme22f2 40469 cdleme26e 40481 cdleme28a 40492 cdleme37m 40584 cdlemg28b 40825 cdlemk3 40955 cdlemk12 40972 cdlemk12u 40994 cdlemkoatnle-2N 40997 cdlemk13-2N 40998 cdlemkole-2N 40999 cdlemk14-2N 41000 cdlemk15-2N 41001 cdlemk16-2N 41002 cdlemk17-2N 41003 cdlemk18-2N 41008 cdlemk19-2N 41009 cdlemk7u-2N 41010 cdlemk11u-2N 41011 cdlemk20-2N 41014 cdlemk30 41016 cdlemk23-3 41024 cdlemk24-3 41025 |
| Copyright terms: Public domain | W3C validator |