MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp32r Structured version   Visualization version   GIF version

Theorem simp32r 1300
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp32r ((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simp32r
StepHypRef Expression
1 simp2r 1201 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cdlema1N  39913  paddasslem15  39956  4atex2-0aOLDN  40200  4atex3  40203  cdleme19b  40426  cdleme19d  40428  cdleme19e  40429  cdleme20d  40434  cdleme20f  40436  cdleme20g  40437  cdleme21d  40452  cdleme21e  40453  cdleme22cN  40464  cdleme22e  40466  cdleme22f2  40469  cdleme26e  40481  cdleme28a  40492  cdleme37m  40584  cdlemg28b  40825  cdlemk3  40955  cdlemk12  40972  cdlemk12u  40994  cdlemkoatnle-2N  40997  cdlemk13-2N  40998  cdlemkole-2N  40999  cdlemk14-2N  41000  cdlemk15-2N  41001  cdlemk16-2N  41002  cdlemk17-2N  41003  cdlemk18-2N  41008  cdlemk19-2N  41009  cdlemk7u-2N  41010  cdlemk11u-2N  41011  cdlemk20-2N  41014  cdlemk30  41016  cdlemk23-3  41024  cdlemk24-3  41025
  Copyright terms: Public domain W3C validator