| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39836 paddasslem15 39879 4atex2-0aOLDN 40123 4atex3 40126 cdleme19b 40349 cdleme19d 40351 cdleme19e 40352 cdleme20d 40357 cdleme20f 40359 cdleme20g 40360 cdleme21d 40375 cdleme21e 40376 cdleme22cN 40387 cdleme22e 40389 cdleme22f2 40392 cdleme26e 40404 cdleme28a 40415 cdleme37m 40507 cdlemg28b 40748 cdlemk3 40878 cdlemk12 40895 cdlemk12u 40917 cdlemkoatnle-2N 40920 cdlemk13-2N 40921 cdlemkole-2N 40922 cdlemk14-2N 40923 cdlemk15-2N 40924 cdlemk16-2N 40925 cdlemk17-2N 40926 cdlemk18-2N 40931 cdlemk19-2N 40932 cdlemk7u-2N 40933 cdlemk11u-2N 40934 cdlemk20-2N 40937 cdlemk30 40939 cdlemk23-3 40947 cdlemk24-3 40948 |
| Copyright terms: Public domain | W3C validator |