| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39785 paddasslem15 39828 4atex2-0aOLDN 40072 4atex3 40075 cdleme19b 40298 cdleme19d 40300 cdleme19e 40301 cdleme20d 40306 cdleme20f 40308 cdleme20g 40309 cdleme21d 40324 cdleme21e 40325 cdleme22cN 40336 cdleme22e 40338 cdleme22f2 40341 cdleme26e 40353 cdleme28a 40364 cdleme37m 40456 cdlemg28b 40697 cdlemk3 40827 cdlemk12 40844 cdlemk12u 40866 cdlemkoatnle-2N 40869 cdlemk13-2N 40870 cdlemkole-2N 40871 cdlemk14-2N 40872 cdlemk15-2N 40873 cdlemk16-2N 40874 cdlemk17-2N 40875 cdlemk18-2N 40880 cdlemk19-2N 40881 cdlemk7u-2N 40882 cdlemk11u-2N 40883 cdlemk20-2N 40886 cdlemk30 40888 cdlemk23-3 40896 cdlemk24-3 40897 |
| Copyright terms: Public domain | W3C validator |