Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: cdlema1N 37805 paddasslem15 37848 4atex2-0aOLDN 38092 4atex3 38095 cdleme19b 38318 cdleme19d 38320 cdleme19e 38321 cdleme20d 38326 cdleme20f 38328 cdleme20g 38329 cdleme21d 38344 cdleme21e 38345 cdleme22cN 38356 cdleme22e 38358 cdleme22f2 38361 cdleme26e 38373 cdleme28a 38384 cdleme37m 38476 cdlemg28b 38717 cdlemk3 38847 cdlemk12 38864 cdlemk12u 38886 cdlemkoatnle-2N 38889 cdlemk13-2N 38890 cdlemkole-2N 38891 cdlemk14-2N 38892 cdlemk15-2N 38893 cdlemk16-2N 38894 cdlemk17-2N 38895 cdlemk18-2N 38900 cdlemk19-2N 38901 cdlemk7u-2N 38902 cdlemk11u-2N 38903 cdlemk20-2N 38906 cdlemk30 38908 cdlemk23-3 38916 cdlemk24-3 38917 |
Copyright terms: Public domain | W3C validator |