Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1197 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1132 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: cdlema1N 37402 paddasslem15 37445 4atex2-0aOLDN 37689 4atex3 37692 cdleme19b 37915 cdleme19d 37917 cdleme19e 37918 cdleme20d 37923 cdleme20f 37925 cdleme20g 37926 cdleme21d 37941 cdleme21e 37942 cdleme22cN 37953 cdleme22e 37955 cdleme22f2 37958 cdleme26e 37970 cdleme28a 37981 cdleme37m 38073 cdlemg28b 38314 cdlemk3 38444 cdlemk12 38461 cdlemk12u 38483 cdlemkoatnle-2N 38486 cdlemk13-2N 38487 cdlemkole-2N 38488 cdlemk14-2N 38489 cdlemk15-2N 38490 cdlemk16-2N 38491 cdlemk17-2N 38492 cdlemk18-2N 38497 cdlemk19-2N 38498 cdlemk7u-2N 38499 cdlemk11u-2N 38500 cdlemk20-2N 38503 cdlemk30 38505 cdlemk23-3 38513 cdlemk24-3 38514 |
Copyright terms: Public domain | W3C validator |