MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp32r Structured version   Visualization version   GIF version

Theorem simp32r 1299
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp32r ((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simp32r
StepHypRef Expression
1 simp2r 1200 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  cdlema1N  39748  paddasslem15  39791  4atex2-0aOLDN  40035  4atex3  40038  cdleme19b  40261  cdleme19d  40263  cdleme19e  40264  cdleme20d  40269  cdleme20f  40271  cdleme20g  40272  cdleme21d  40287  cdleme21e  40288  cdleme22cN  40299  cdleme22e  40301  cdleme22f2  40304  cdleme26e  40316  cdleme28a  40327  cdleme37m  40419  cdlemg28b  40660  cdlemk3  40790  cdlemk12  40807  cdlemk12u  40829  cdlemkoatnle-2N  40832  cdlemk13-2N  40833  cdlemkole-2N  40834  cdlemk14-2N  40835  cdlemk15-2N  40836  cdlemk16-2N  40837  cdlemk17-2N  40838  cdlemk18-2N  40843  cdlemk19-2N  40844  cdlemk7u-2N  40845  cdlemk11u-2N  40846  cdlemk20-2N  40849  cdlemk30  40851  cdlemk23-3  40859  cdlemk24-3  40860
  Copyright terms: Public domain W3C validator