Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1198 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: cdlema1N 37732 paddasslem15 37775 4atex2-0aOLDN 38019 4atex3 38022 cdleme19b 38245 cdleme19d 38247 cdleme19e 38248 cdleme20d 38253 cdleme20f 38255 cdleme20g 38256 cdleme21d 38271 cdleme21e 38272 cdleme22cN 38283 cdleme22e 38285 cdleme22f2 38288 cdleme26e 38300 cdleme28a 38311 cdleme37m 38403 cdlemg28b 38644 cdlemk3 38774 cdlemk12 38791 cdlemk12u 38813 cdlemkoatnle-2N 38816 cdlemk13-2N 38817 cdlemkole-2N 38818 cdlemk14-2N 38819 cdlemk15-2N 38820 cdlemk16-2N 38821 cdlemk17-2N 38822 cdlemk18-2N 38827 cdlemk19-2N 38828 cdlemk7u-2N 38829 cdlemk11u-2N 38830 cdlemk20-2N 38833 cdlemk30 38835 cdlemk23-3 38843 cdlemk24-3 38844 |
Copyright terms: Public domain | W3C validator |