| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39773 paddasslem15 39816 4atex2-0aOLDN 40060 4atex3 40063 cdleme19b 40286 cdleme19d 40288 cdleme19e 40289 cdleme20d 40294 cdleme20f 40296 cdleme20g 40297 cdleme21d 40312 cdleme21e 40313 cdleme22cN 40324 cdleme22e 40326 cdleme22f2 40329 cdleme26e 40341 cdleme28a 40352 cdleme37m 40444 cdlemg28b 40685 cdlemk3 40815 cdlemk12 40832 cdlemk12u 40854 cdlemkoatnle-2N 40857 cdlemk13-2N 40858 cdlemkole-2N 40859 cdlemk14-2N 40860 cdlemk15-2N 40861 cdlemk16-2N 40862 cdlemk17-2N 40863 cdlemk18-2N 40868 cdlemk19-2N 40869 cdlemk7u-2N 40870 cdlemk11u-2N 40871 cdlemk20-2N 40874 cdlemk30 40876 cdlemk23-3 40884 cdlemk24-3 40885 |
| Copyright terms: Public domain | W3C validator |