| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39810 paddasslem15 39853 4atex2-0aOLDN 40097 4atex3 40100 cdleme19b 40323 cdleme19d 40325 cdleme19e 40326 cdleme20d 40331 cdleme20f 40333 cdleme20g 40334 cdleme21d 40349 cdleme21e 40350 cdleme22cN 40361 cdleme22e 40363 cdleme22f2 40366 cdleme26e 40378 cdleme28a 40389 cdleme37m 40481 cdlemg28b 40722 cdlemk3 40852 cdlemk12 40869 cdlemk12u 40891 cdlemkoatnle-2N 40894 cdlemk13-2N 40895 cdlemkole-2N 40896 cdlemk14-2N 40897 cdlemk15-2N 40898 cdlemk16-2N 40899 cdlemk17-2N 40900 cdlemk18-2N 40905 cdlemk19-2N 40906 cdlemk7u-2N 40907 cdlemk11u-2N 40908 cdlemk20-2N 40911 cdlemk30 40913 cdlemk23-3 40921 cdlemk24-3 40922 |
| Copyright terms: Public domain | W3C validator |