Proof of Theorem cdlemkid2
Step | Hyp | Ref
| Expression |
1 | | simp32 1209 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 = ( I ↾ 𝐵)) |
2 | 1 | csbeq1d 3836 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ⦋𝐺 / 𝑔⦌𝑌 = ⦋( I ↾ 𝐵) / 𝑔⦌𝑌) |
3 | | cdlemk5.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
4 | | cdlemk5.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | cdlemk5.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | 3, 4, 5 | idltrn 38164 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
7 | 6 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) ∈ 𝑇) |
8 | | cdlemk5.y |
. . . . 5
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
9 | 8 | cdlemk41 38934 |
. . . 4
⊢ (( I
↾ 𝐵) ∈ 𝑇 → ⦋( I
↾ 𝐵) / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘( I ↾ 𝐵))) ∧ (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏))))) |
10 | 7, 9 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ⦋( I ↾ 𝐵) / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘( I ↾ 𝐵))) ∧ (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏))))) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) |
12 | | cdlemk5.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
13 | 3, 11, 4, 12 | trlid0 38190 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
14 | 13 | 3ad2ant1 1132 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
15 | 14 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 ∨ (𝑅‘( I ↾ 𝐵))) = (𝑃 ∨ (0.‘𝐾))) |
16 | | simp1l 1196 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ HL) |
17 | | hlol 37375 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ OL) |
19 | | simp31l 1295 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃 ∈ 𝐴) |
20 | | cdlemk5.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
21 | 3, 20 | atbase 37303 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃 ∈ 𝐵) |
23 | | cdlemk5.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
24 | 3, 23, 11 | olj01 37239 |
. . . . . . 7
⊢ ((𝐾 ∈ OL ∧ 𝑃 ∈ 𝐵) → (𝑃 ∨ (0.‘𝐾)) = 𝑃) |
25 | 18, 22, 24 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 ∨ (0.‘𝐾)) = 𝑃) |
26 | 15, 25 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 ∨ (𝑅‘( I ↾ 𝐵))) = 𝑃) |
27 | | simp1 1135 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | | simp33l 1299 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏 ∈ 𝑇) |
29 | 4, 5 | ltrncnv 38160 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑏 ∈ 𝑇) → ◡𝑏 ∈ 𝑇) |
30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ◡𝑏 ∈ 𝑇) |
31 | 3, 4, 5 | ltrn1o 38138 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝑏 ∈ 𝑇) → ◡𝑏:𝐵–1-1-onto→𝐵) |
32 | 27, 30, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ◡𝑏:𝐵–1-1-onto→𝐵) |
33 | | f1of 6716 |
. . . . . . . . . 10
⊢ (◡𝑏:𝐵–1-1-onto→𝐵 → ◡𝑏:𝐵⟶𝐵) |
34 | | fcoi2 6649 |
. . . . . . . . . 10
⊢ (◡𝑏:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ◡𝑏) = ◡𝑏) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (( I ↾ 𝐵) ∘ ◡𝑏) = ◡𝑏) |
36 | 35 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏)) = (𝑅‘◡𝑏)) |
37 | 4, 5, 12 | trlcnv 38179 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑏 ∈ 𝑇) → (𝑅‘◡𝑏) = (𝑅‘𝑏)) |
38 | 27, 28, 37 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘◡𝑏) = (𝑅‘𝑏)) |
39 | 36, 38 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏)) = (𝑅‘𝑏)) |
40 | 39 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘𝑏))) |
41 | | simp31 1208 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
42 | | simp33 1210 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵))) |
43 | 41, 42 | jca 512 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) |
44 | | cdlemk5.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
45 | | cdlemk5.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
46 | | cdlemk5.z |
. . . . . . . 8
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
47 | 3, 44, 23, 45, 20, 4, 5, 12, 46 | cdlemkid1 38936 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 ∨ (𝑅‘𝑏)) = (𝑃 ∨ (𝑅‘𝑏))) |
48 | 43, 47 | syld3an3 1408 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 ∨ (𝑅‘𝑏)) = (𝑃 ∨ (𝑅‘𝑏))) |
49 | 40, 48 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏))) = (𝑃 ∨ (𝑅‘𝑏))) |
50 | 26, 49 | oveq12d 7293 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 ∨ (𝑅‘( I ↾ 𝐵))) ∧ (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏)))) = (𝑃 ∧ (𝑃 ∨ (𝑅‘𝑏)))) |
51 | 16 | hllatd 37378 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ Lat) |
52 | 3, 4, 5, 12 | trlcl 38178 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑏 ∈ 𝑇) → (𝑅‘𝑏) ∈ 𝐵) |
53 | 27, 28, 52 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘𝑏) ∈ 𝐵) |
54 | 3, 23, 45 | latabs2 18194 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝑏) ∈ 𝐵) → (𝑃 ∧ (𝑃 ∨ (𝑅‘𝑏))) = 𝑃) |
55 | 51, 22, 53, 54 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 ∧ (𝑃 ∨ (𝑅‘𝑏))) = 𝑃) |
56 | 50, 55 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 ∨ (𝑅‘( I ↾ 𝐵))) ∧ (𝑍 ∨ (𝑅‘(( I ↾ 𝐵) ∘ ◡𝑏)))) = 𝑃) |
57 | 10, 56 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ⦋( I ↾ 𝐵) / 𝑔⦌𝑌 = 𝑃) |
58 | 2, 57 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ⦋𝐺 / 𝑔⦌𝑌 = 𝑃) |