Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid2 Structured version   Visualization version   GIF version

Theorem cdlemkid2 38220
Description: Lemma for cdlemkid 38232. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
Assertion
Ref Expression
cdlemkid2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏
Allowed substitution hints:   𝐴(𝑔,𝑏)   𝐵(𝑏)   𝑃(𝑏)   𝑅(𝑏)   𝑇(𝑏)   𝐹(𝑔,𝑏)   𝐺(𝑔,𝑏)   𝐻(𝑔,𝑏)   (𝑏)   𝐾(𝑔,𝑏)   (𝑔,𝑏)   (𝑏)   𝑁(𝑔,𝑏)   𝑊(𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑏)

Proof of Theorem cdlemkid2
StepHypRef Expression
1 simp32 1207 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 = ( I ↾ 𝐵))
21csbeq1d 3832 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = ( I ↾ 𝐵) / 𝑔𝑌)
3 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
4 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5idltrn 37446 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
763ad2ant1 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) ∈ 𝑇)
8 cdlemk5.y . . . . 5 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
98cdlemk41 38216 . . . 4 (( I ↾ 𝐵) ∈ 𝑇( I ↾ 𝐵) / 𝑔𝑌 = ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))))
107, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) / 𝑔𝑌 = ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))))
11 eqid 2798 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
12 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
133, 11, 4, 12trlid0 37472 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
14133ad2ant1 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
1514oveq2d 7151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅‘( I ↾ 𝐵))) = (𝑃 (0.‘𝐾)))
16 simp1l 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ HL)
17 hlol 36657 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
1816, 17syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ OL)
19 simp31l 1293 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐴)
20 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
213, 20atbase 36585 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
2219, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐵)
23 cdlemk5.j . . . . . . . 8 = (join‘𝐾)
243, 23, 11olj01 36521 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑃𝐵) → (𝑃 (0.‘𝐾)) = 𝑃)
2518, 22, 24syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (0.‘𝐾)) = 𝑃)
2615, 25eqtrd 2833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅‘( I ↾ 𝐵))) = 𝑃)
27 simp1 1133 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp33l 1297 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
294, 5ltrncnv 37442 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → 𝑏𝑇)
3027, 28, 29syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
313, 4, 5ltrn1o 37420 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → 𝑏:𝐵1-1-onto𝐵)
3227, 30, 31syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏:𝐵1-1-onto𝐵)
33 f1of 6590 . . . . . . . . . 10 (𝑏:𝐵1-1-onto𝐵𝑏:𝐵𝐵)
34 fcoi2 6527 . . . . . . . . . 10 (𝑏:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑏) = 𝑏)
3532, 33, 343syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (( I ↾ 𝐵) ∘ 𝑏) = 𝑏)
3635fveq2d 6649 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)) = (𝑅𝑏))
374, 5, 12trlcnv 37461 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → (𝑅𝑏) = (𝑅𝑏))
3827, 28, 37syl2anc 587 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) = (𝑅𝑏))
3936, 38eqtrd 2833 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)) = (𝑅𝑏))
4039oveq2d 7151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏))) = (𝑍 (𝑅𝑏)))
41 simp31 1206 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
42 simp33 1208 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))
4341, 42jca 515 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵))))
44 cdlemk5.l . . . . . . . 8 = (le‘𝐾)
45 cdlemk5.m . . . . . . . 8 = (meet‘𝐾)
46 cdlemk5.z . . . . . . . 8 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
473, 44, 23, 45, 20, 4, 5, 12, 46cdlemkid1 38218 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
4843, 47syld3an3 1406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
4940, 48eqtrd 2833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏))) = (𝑃 (𝑅𝑏)))
5026, 49oveq12d 7153 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))) = (𝑃 (𝑃 (𝑅𝑏))))
5116hllatd 36660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ Lat)
523, 4, 5, 12trlcl 37460 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → (𝑅𝑏) ∈ 𝐵)
5327, 28, 52syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐵)
543, 23, 45latabs2 17690 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝑏) ∈ 𝐵) → (𝑃 (𝑃 (𝑅𝑏))) = 𝑃)
5551, 22, 53, 54syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑃 (𝑅𝑏))) = 𝑃)
5650, 55eqtrd 2833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))) = 𝑃)
5710, 56eqtrd 2833 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) / 𝑔𝑌 = 𝑃)
582, 57eqtrd 2833 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  csb 3828   class class class wbr 5030   I cid 5424  ccnv 5518  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  0.cp0 17639  Latclat 17647  OLcol 36470  Atomscatm 36559  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-undef 7922  df-map 8391  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455
This theorem is referenced by:  cdlemkid3N  38229  cdlemkid4  38230
  Copyright terms: Public domain W3C validator