Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid2 Structured version   Visualization version   GIF version

Theorem cdlemkid2 41096
Description: Lemma for cdlemkid 41108. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
Assertion
Ref Expression
cdlemkid2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏
Allowed substitution hints:   𝐴(𝑔,𝑏)   𝐵(𝑏)   𝑃(𝑏)   𝑅(𝑏)   𝑇(𝑏)   𝐹(𝑔,𝑏)   𝐺(𝑔,𝑏)   𝐻(𝑔,𝑏)   (𝑏)   𝐾(𝑔,𝑏)   (𝑔,𝑏)   (𝑏)   𝑁(𝑔,𝑏)   𝑊(𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑏)

Proof of Theorem cdlemkid2
StepHypRef Expression
1 simp32 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 = ( I ↾ 𝐵))
21csbeq1d 3850 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = ( I ↾ 𝐵) / 𝑔𝑌)
3 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
4 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5idltrn 40322 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
763ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) ∈ 𝑇)
8 cdlemk5.y . . . . 5 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
98cdlemk41 41092 . . . 4 (( I ↾ 𝐵) ∈ 𝑇( I ↾ 𝐵) / 𝑔𝑌 = ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))))
107, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) / 𝑔𝑌 = ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))))
11 eqid 2733 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
12 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
133, 11, 4, 12trlid0 40348 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
14133ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
1514oveq2d 7371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅‘( I ↾ 𝐵))) = (𝑃 (0.‘𝐾)))
16 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ HL)
17 hlol 39533 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
1816, 17syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ OL)
19 simp31l 1297 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐴)
20 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
213, 20atbase 39461 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
2219, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐵)
23 cdlemk5.j . . . . . . . 8 = (join‘𝐾)
243, 23, 11olj01 39397 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑃𝐵) → (𝑃 (0.‘𝐾)) = 𝑃)
2518, 22, 24syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (0.‘𝐾)) = 𝑃)
2615, 25eqtrd 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅‘( I ↾ 𝐵))) = 𝑃)
27 simp1 1136 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp33l 1301 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
294, 5ltrncnv 40318 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → 𝑏𝑇)
3027, 28, 29syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
313, 4, 5ltrn1o 40296 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → 𝑏:𝐵1-1-onto𝐵)
3227, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏:𝐵1-1-onto𝐵)
33 f1of 6771 . . . . . . . . . 10 (𝑏:𝐵1-1-onto𝐵𝑏:𝐵𝐵)
34 fcoi2 6706 . . . . . . . . . 10 (𝑏:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑏) = 𝑏)
3532, 33, 343syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (( I ↾ 𝐵) ∘ 𝑏) = 𝑏)
3635fveq2d 6835 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)) = (𝑅𝑏))
374, 5, 12trlcnv 40337 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → (𝑅𝑏) = (𝑅𝑏))
3827, 28, 37syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) = (𝑅𝑏))
3936, 38eqtrd 2768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)) = (𝑅𝑏))
4039oveq2d 7371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏))) = (𝑍 (𝑅𝑏)))
41 simp31 1210 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
42 simp33 1212 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))
4341, 42jca 511 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵))))
44 cdlemk5.l . . . . . . . 8 = (le‘𝐾)
45 cdlemk5.m . . . . . . . 8 = (meet‘𝐾)
46 cdlemk5.z . . . . . . . 8 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
473, 44, 23, 45, 20, 4, 5, 12, 46cdlemkid1 41094 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
4843, 47syld3an3 1411 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
4940, 48eqtrd 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏))) = (𝑃 (𝑅𝑏)))
5026, 49oveq12d 7373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))) = (𝑃 (𝑃 (𝑅𝑏))))
5116hllatd 39536 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ Lat)
523, 4, 5, 12trlcl 40336 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇) → (𝑅𝑏) ∈ 𝐵)
5327, 28, 52syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐵)
543, 23, 45latabs2 18390 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝑏) ∈ 𝐵) → (𝑃 (𝑃 (𝑅𝑏))) = 𝑃)
5551, 22, 53, 54syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑃 (𝑅𝑏))) = 𝑃)
5650, 55eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅‘( I ↾ 𝐵))) (𝑍 (𝑅‘(( I ↾ 𝐵) ∘ 𝑏)))) = 𝑃)
5710, 56eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ( I ↾ 𝐵) / 𝑔𝑌 = 𝑃)
582, 57eqtrd 2768 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  csb 3846   class class class wbr 5095   I cid 5515  ccnv 5620  cres 5623  ccom 5625  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  meetcmee 18226  0.cp0 18335  Latclat 18345  OLcol 39346  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331
This theorem is referenced by:  cdlemkid3N  41105  cdlemkid4  41106
  Copyright terms: Public domain W3C validator