Proof of Theorem cdleme28a
Step | Hyp | Ref
| Expression |
1 | | cdleme26.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdleme26.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | simp11l 1282 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝐾 ∈ Lat) |
5 | | simp11r 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑊 ∈ 𝐻) |
6 | | simp12 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
7 | | simp13 1203 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
8 | | simp22 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
9 | | simp21 1204 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑃 ≠ 𝑄) |
10 | | cdleme26.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
11 | | cdleme26.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
12 | | cdleme26.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
13 | | cdleme26.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | cdleme27.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
15 | | cdleme27.f |
. . . . 5
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
16 | | cdleme27.z |
. . . . 5
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
17 | | cdleme27.n |
. . . . 5
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
18 | | cdleme27.d |
. . . . 5
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
19 | | cdleme27.c |
. . . . 5
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
20 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | cdleme27cl 38307 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝐶 ∈ 𝐵) |
21 | 3, 5, 6, 7, 8, 9, 20 | syl222anc 1384 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝐶 ∈ 𝐵) |
22 | | simp23 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
23 | | cdleme27.g |
. . . . . 6
⊢ 𝐺 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
24 | | cdleme27.o |
. . . . . 6
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
25 | | cdleme27.e |
. . . . . 6
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
26 | | cdleme27.y |
. . . . . 6
⊢ 𝑌 = if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) |
27 | 1, 2, 10, 11, 12, 13, 14, 23, 16, 24, 25, 26 | cdleme27cl 38307 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝑌 ∈ 𝐵) |
28 | 3, 5, 6, 7, 22, 9,
27 | syl222anc 1384 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑌 ∈ 𝐵) |
29 | | simp11 1201 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
30 | 29, 8, 22 | 3jca 1126 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) |
31 | | simp33 1209 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
32 | | simp31 1207 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑠 ≠ 𝑡) |
33 | | simp32l 1296 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
34 | | simp32r 1297 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
35 | 32, 33, 34 | 3jca 1126 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑠 ≠ 𝑡 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
36 | | cdleme28a.v |
. . . . . . 7
⊢ 𝑉 = ((𝑠 ∨ 𝑡) ∧ (𝑋 ∧ 𝑊)) |
37 | 1, 2, 10, 11, 12, 13, 36 | cdleme23b 38291 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑠 ≠ 𝑡 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑉 ∈ 𝐴) |
38 | 30, 31, 35, 37 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑉 ∈ 𝐴) |
39 | 1, 12 | atbase 37230 |
. . . . 5
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ 𝐵) |
40 | 38, 39 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑉 ∈ 𝐵) |
41 | 1, 10 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝑌 ∨ 𝑉) ∈ 𝐵) |
42 | 4, 28, 40, 41 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑌 ∨ 𝑉) ∈ 𝐵) |
43 | | simp33l 1298 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑋 ∈ 𝐵) |
44 | 1, 13 | lhpbase 37939 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
45 | 5, 44 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑊 ∈ 𝐵) |
46 | 1, 11 | latmcl 18073 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
47 | 4, 43, 45, 46 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
48 | 1, 10 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (𝑌 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
49 | 4, 28, 47, 48 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑌 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
50 | 1, 2, 10, 11, 12, 13, 36 | cdleme23c 38292 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑠 ≠ 𝑡 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑠 ≤ (𝑡 ∨ 𝑉)) |
51 | 30, 31, 35, 50 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑠 ≤ (𝑡 ∨ 𝑉)) |
52 | 32, 51 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉))) |
53 | 1, 2, 10, 11, 12, 13, 36 | cdleme23a 38290 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑠 ≠ 𝑡 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑉 ≤ 𝑊) |
54 | 30, 31, 35, 53 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑉 ≤ 𝑊) |
55 | 38, 54 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
56 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26 | cdleme27a 38308 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
57 | 29, 9, 8, 6, 7, 22,
52, 55, 56 | syl332anc 1399 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
58 | | simp22l 1290 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑠 ∈ 𝐴) |
59 | | simp23l 1292 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑡 ∈ 𝐴) |
60 | 1, 10, 12 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (𝑠 ∨ 𝑡) ∈ 𝐵) |
61 | 3, 58, 59, 60 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑠 ∨ 𝑡) ∈ 𝐵) |
62 | 1, 2, 11 | latmle2 18098 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑠 ∨ 𝑡) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((𝑠 ∨ 𝑡) ∧ (𝑋 ∧ 𝑊)) ≤ (𝑋 ∧ 𝑊)) |
63 | 4, 61, 47, 62 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → ((𝑠 ∨ 𝑡) ∧ (𝑋 ∧ 𝑊)) ≤ (𝑋 ∧ 𝑊)) |
64 | 36, 63 | eqbrtrid 5105 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝑉 ≤ (𝑋 ∧ 𝑊)) |
65 | 1, 2, 10 | latjlej2 18087 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑉 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑉 ≤ (𝑋 ∧ 𝑊) → (𝑌 ∨ 𝑉) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)))) |
66 | 4, 40, 47, 28, 65 | syl13anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑉 ≤ (𝑋 ∧ 𝑊) → (𝑌 ∨ 𝑉) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)))) |
67 | 64, 66 | mpd 15 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑌 ∨ 𝑉) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) |
68 | 1, 2, 4, 21, 42, 49, 57, 67 | lattrd 18079 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) |
69 | 1, 2, 10 | latlej2 18082 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) |
70 | 4, 28, 47, 69 | syl3anc 1369 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) |
71 | 1, 2, 10 | latjle12 18083 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) → ((𝐶 ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) ↔ (𝐶 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)))) |
72 | 4, 21, 47, 49, 71 | syl13anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → ((𝐶 ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) ↔ (𝐶 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊)))) |
73 | 68, 70, 72 | mpbi2and 708 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐶 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑌 ∨ (𝑋 ∧ 𝑊))) |