Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28a Structured version   Visualization version   GIF version

Theorem cdleme28a 40352
Description: Lemma for cdleme25b 40336. TODO: FIX COMMENT. (Contributed by NM, 4-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
cdleme28a.v 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
Assertion
Ref Expression
cdleme28a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧   𝑋,𝑠
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑋(𝑧,𝑢,𝑡)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme28a
StepHypRef Expression
1 cdleme26.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme26.l . . 3 = (le‘𝐾)
3 simp11l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ HL)
43hllatd 39345 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ Lat)
5 simp11r 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐻)
6 simp12 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
7 simp13 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
8 simp22 1206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
9 simp21 1205 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑃𝑄)
10 cdleme26.j . . . . 5 = (join‘𝐾)
11 cdleme26.m . . . . 5 = (meet‘𝐾)
12 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
13 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
14 cdleme27.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
15 cdleme27.f . . . . 5 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
16 cdleme27.z . . . . 5 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
17 cdleme27.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
18 cdleme27.d . . . . 5 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
19 cdleme27.c . . . . 5 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
201, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme27cl 40348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝐶𝐵)
213, 5, 6, 7, 8, 9, 20syl222anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶𝐵)
22 simp23 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
23 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
24 cdleme27.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
25 cdleme27.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
26 cdleme27.y . . . . . 6 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
271, 2, 10, 11, 12, 13, 14, 23, 16, 24, 25, 26cdleme27cl 40348 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ 𝑃𝑄)) → 𝑌𝐵)
283, 5, 6, 7, 22, 9, 27syl222anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑌𝐵)
29 simp11 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3029, 8, 223jca 1127 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)))
31 simp33 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
32 simp31 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝑡)
33 simp32l 1297 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 (𝑋 𝑊)) = 𝑋)
34 simp32r 1298 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡 (𝑋 𝑊)) = 𝑋)
3532, 33, 343jca 1127 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))
36 cdleme28a.v . . . . . . 7 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
371, 2, 10, 11, 12, 13, 36cdleme23b 40332 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)
3830, 31, 35, 37syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐴)
391, 12atbase 39270 . . . . 5 (𝑉𝐴𝑉𝐵)
4038, 39syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐵)
411, 10latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
424, 28, 40, 41syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) ∈ 𝐵)
43 simp33l 1299 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑋𝐵)
441, 13lhpbase 39980 . . . . . 6 (𝑊𝐻𝑊𝐵)
455, 44syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐵)
461, 11latmcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
474, 43, 45, 46syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
481, 10latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
494, 28, 47, 48syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
501, 2, 10, 11, 12, 13, 36cdleme23c 40333 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑠 (𝑡 𝑉))
5130, 31, 35, 50syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠 (𝑡 𝑉))
5232, 51jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
531, 2, 10, 11, 12, 13, 36cdleme23a 40331 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉 𝑊)
5430, 31, 35, 53syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 𝑊)
5538, 54jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉𝐴𝑉 𝑊))
561, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26cdleme27a 40349 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
5729, 9, 8, 6, 7, 22, 52, 55, 56syl332anc 1400 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 𝑉))
58 simp22l 1291 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝐴)
59 simp23l 1293 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑡𝐴)
601, 10, 12hlatjcl 39348 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑠𝐴𝑡𝐴) → (𝑠 𝑡) ∈ 𝐵)
613, 58, 59, 60syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 𝑡) ∈ 𝐵)
621, 2, 11latmle2 18522 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑠 𝑡) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
634, 61, 47, 62syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
6436, 63eqbrtrid 5182 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 (𝑋 𝑊))
651, 2, 10latjlej2 18511 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑉𝐵 ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵)) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
664, 40, 47, 28, 65syl13anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
6764, 66mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) (𝑌 (𝑋 𝑊)))
681, 2, 4, 21, 42, 49, 57, 67lattrd 18503 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 (𝑋 𝑊)))
691, 2, 10latlej2 18506 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
704, 28, 47, 69syl3anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
711, 2, 10latjle12 18507 . . 3 ((𝐾 ∈ Lat ∧ (𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 (𝑋 𝑊)) ∈ 𝐵)) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
724, 21, 47, 49, 71syl13anc 1371 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
7368, 70, 72mpbi2and 712 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  ifcif 4530   class class class wbr 5147  cfv 6562  crio 7386  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Latclat 18488  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-undef 8296  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970
This theorem is referenced by:  cdleme28b  40353
  Copyright terms: Public domain W3C validator