Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk3 Structured version   Visualization version   GIF version

Theorem cdlemk3 39692
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐡 = (Baseβ€˜πΎ)
cdlemk.l ≀ = (leβ€˜πΎ)
cdlemk.j ∨ = (joinβ€˜πΎ)
cdlemk.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk.h 𝐻 = (LHypβ€˜πΎ)
cdlemk.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk.m ∧ = (meetβ€˜πΎ)
Assertion
Ref Expression
cdlemk3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΉβ€˜π‘ƒ))

Proof of Theorem cdlemk3
StepHypRef Expression
1 simp1l 1197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
2 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
3 simp2l 1199 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐹 ∈ 𝑇)
4 simp32l 1298 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
5 cdlemk.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 cdlemk.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
7 cdlemk.h . . . 4 𝐻 = (LHypβ€˜πΎ)
8 cdlemk.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 cdlemk.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
105, 6, 7, 8, 9trlnidat 39032 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
112, 3, 4, 10syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
12 simp2r 1200 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐺 ∈ 𝑇)
13 simp31 1209 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
146, 7, 8, 9trlcocnvat 39583 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
152, 12, 3, 13, 14syl121anc 1375 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
16 simp33l 1300 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
17 cdlemk.l . . . 4 ≀ = (leβ€˜πΎ)
1817, 6, 7, 8ltrnat 38999 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
192, 3, 16, 18syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
207, 8ltrncnv 39005 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
212, 3, 20syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ◑𝐹 ∈ 𝑇)
227, 8, 9trlcnv 39024 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
232, 3, 22syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
2413necomd 2996 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
2523, 24eqnetrd 3008 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜β—‘πΉ) β‰  (π‘…β€˜πΊ))
26 simp32r 1299 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
275, 7, 8, 9trlcone 39587 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (◑𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜β—‘πΉ) β‰  (π‘…β€˜πΊ) ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜β—‘πΉ) β‰  (π‘…β€˜(◑𝐹 ∘ 𝐺)))
282, 21, 12, 25, 26, 27syl122anc 1379 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜β—‘πΉ) β‰  (π‘…β€˜(◑𝐹 ∘ 𝐺)))
297, 8ltrncom 39597 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ◑𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (◑𝐹 ∘ 𝐺) = (𝐺 ∘ ◑𝐹))
302, 21, 12, 29syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (◑𝐹 ∘ 𝐺) = (𝐺 ∘ ◑𝐹))
3130fveq2d 6892 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(◑𝐹 ∘ 𝐺)) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
3228, 23, 313netr3d 3017 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
33 simp33 1211 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3417, 6, 7, 8ltrnel 38998 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
3534simprd 496 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)
362, 3, 33, 35syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)
3717, 7, 8, 9trlle 39043 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ≀ π‘Š)
382, 3, 37syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) ≀ π‘Š)
397, 8ltrnco 39578 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
402, 12, 21, 39syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
4117, 7, 8, 9trlle 39043 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∘ ◑𝐹) ∈ 𝑇) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
422, 40, 41syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
431hllatd 38222 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
445, 6atbase 38147 . . . . . . 7 ((π‘…β€˜πΉ) ∈ 𝐴 β†’ (π‘…β€˜πΉ) ∈ 𝐡)
4511, 44syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) ∈ 𝐡)
465, 6atbase 38147 . . . . . . 7 ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
4715, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
48 simp1r 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ π‘Š ∈ 𝐻)
495, 7lhpbase 38857 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
5048, 49syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ π‘Š ∈ 𝐡)
51 cdlemk.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
525, 17, 51latjle12 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ ((π‘…β€˜πΉ) ∈ 𝐡 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (((π‘…β€˜πΉ) ≀ π‘Š ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š) ↔ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ≀ π‘Š))
5343, 45, 47, 50, 52syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (((π‘…β€˜πΉ) ≀ π‘Š ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š) ↔ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ≀ π‘Š))
5438, 42, 53mpbi2and 710 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ≀ π‘Š)
555, 6atbase 38147 . . . . . 6 ((πΉβ€˜π‘ƒ) ∈ 𝐴 β†’ (πΉβ€˜π‘ƒ) ∈ 𝐡)
5619, 55syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐡)
575, 51, 6hlatjcl 38225 . . . . . 6 ((𝐾 ∈ HL ∧ (π‘…β€˜πΉ) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡)
581, 11, 15, 57syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡)
595, 17lattr 18393 . . . . 5 ((𝐾 ∈ Lat ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐡 ∧ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (((πΉβ€˜π‘ƒ) ≀ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∧ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ≀ π‘Š) β†’ (πΉβ€˜π‘ƒ) ≀ π‘Š))
6043, 56, 58, 50, 59syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (((πΉβ€˜π‘ƒ) ≀ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∧ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ≀ π‘Š) β†’ (πΉβ€˜π‘ƒ) ≀ π‘Š))
6154, 60mpan2d 692 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β†’ (πΉβ€˜π‘ƒ) ≀ π‘Š))
6236, 61mtod 197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
63 cdlemk.m . . 3 ∧ = (meetβ€˜πΎ)
6417, 51, 63, 62llnma2 38648 . 2 ((𝐾 ∈ HL ∧ ((π‘…β€˜πΉ) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ ((π‘…β€˜πΉ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))) β†’ (((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΉβ€˜π‘ƒ))
651, 11, 15, 19, 32, 62, 64syl132anc 1388 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΉβ€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147   I cid 5572  β—‘ccnv 5674   β†Ύ cres 5677   ∘ ccom 5679  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  cdlemk5a  39694
  Copyright terms: Public domain W3C validator