| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8142 poxp3 8149 icodiamlt 15454 issubc3 17862 clsconn 23368 txlly 23574 txnlly 23575 itg2add 25712 ftc1a 25996 nosupprefixmo 27664 noinfprefixmo 27665 nosupbnd2 27680 noinfbnd2 27695 mulsprop 28085 f1otrg 28850 ax5seglem6 28913 axcontlem9 28951 axcontlem10 28952 clwwlkf 30028 locfinref 33872 erdszelem7 35219 btwnconn1lem13 36117 dfsalgen2 46370 grtrimap 47960 |
| Copyright terms: Public domain | W3C validator |