Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 727 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: icodiamlt 14848 issubc3 17183 clsconn 22135 txlly 22341 txnlly 22342 itg2add 24464 ftc1a 24741 f1otrg 26769 ax5seglem6 26832 axcontlem9 26870 axcontlem10 26871 clwwlkf 27936 locfinref 31316 erdszelem7 32679 poxp2 33349 nosupprefixmo 33492 noinfprefixmo 33493 nosupbnd2 33508 noinfbnd2 33523 btwnconn1lem13 33976 dfsalgen2 43375 |
Copyright terms: Public domain | W3C validator |