MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1218
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1136 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 725 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  icodiamlt  15147  issubc3  17564  clsconn  22581  txlly  22787  txnlly  22788  itg2add  24924  ftc1a  25201  f1otrg  27232  ax5seglem6  27302  axcontlem9  27340  axcontlem10  27341  clwwlkf  28411  locfinref  31791  erdszelem7  33159  poxp2  33790  nosupprefixmo  33903  noinfprefixmo  33904  nosupbnd2  33919  noinfbnd2  33934  btwnconn1lem13  34401  dfsalgen2  43880
  Copyright terms: Public domain W3C validator