| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8068 poxp3 8075 icodiamlt 15337 issubc3 17748 clsconn 23338 txlly 23544 txnlly 23545 itg2add 25680 ftc1a 25964 nosupprefixmo 27632 noinfprefixmo 27633 nosupbnd2 27648 noinfbnd2 27663 mulsprop 28062 f1otrg 28842 ax5seglem6 28905 axcontlem9 28943 axcontlem10 28944 clwwlkf 30017 locfinref 33844 erdszelem7 35209 btwnconn1lem13 36112 dfsalgen2 46358 grtrimap 47958 pgn4cyclex 48136 |
| Copyright terms: Public domain | W3C validator |