| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8082 poxp3 8089 icodiamlt 15355 issubc3 17766 clsconn 23355 txlly 23561 txnlly 23562 itg2add 25697 ftc1a 25981 nosupprefixmo 27649 noinfprefixmo 27650 nosupbnd2 27665 noinfbnd2 27680 mulsprop 28079 f1otrg 28859 ax5seglem6 28923 axcontlem9 28961 axcontlem10 28962 clwwlkf 30038 locfinref 33865 erdszelem7 35252 btwnconn1lem13 36154 dfsalgen2 46453 grtrimap 48062 pgn4cyclex 48240 |
| Copyright terms: Public domain | W3C validator |