MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1217
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1135 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 724 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  icodiamlt  15075  issubc3  17480  clsconn  22489  txlly  22695  txnlly  22696  itg2add  24829  ftc1a  25106  f1otrg  27136  ax5seglem6  27205  axcontlem9  27243  axcontlem10  27244  clwwlkf  28312  locfinref  31693  erdszelem7  33059  poxp2  33717  nosupprefixmo  33830  noinfprefixmo  33831  nosupbnd2  33846  noinfbnd2  33861  btwnconn1lem13  34328  dfsalgen2  43770
  Copyright terms: Public domain W3C validator