MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1220
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1138 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  poxp2  8168  poxp3  8175  icodiamlt  15474  issubc3  17894  clsconn  23438  txlly  23644  txnlly  23645  itg2add  25794  ftc1a  26078  nosupprefixmo  27745  noinfprefixmo  27746  nosupbnd2  27761  noinfbnd2  27776  mulsprop  28156  f1otrg  28879  ax5seglem6  28949  axcontlem9  28987  axcontlem10  28988  clwwlkf  30066  locfinref  33840  erdszelem7  35202  btwnconn1lem13  36100  dfsalgen2  46356  grtrimap  47915
  Copyright terms: Public domain W3C validator