MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1219
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 726 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  poxp2  8131  poxp3  8138  icodiamlt  15386  issubc3  17803  clsconn  23154  txlly  23360  txnlly  23361  itg2add  25501  ftc1a  25778  nosupprefixmo  27427  noinfprefixmo  27428  nosupbnd2  27443  noinfbnd2  27458  mulsprop  27813  f1otrg  28377  ax5seglem6  28447  axcontlem9  28485  axcontlem10  28486  clwwlkf  29555  locfinref  33107  erdszelem7  34474  btwnconn1lem13  35363  dfsalgen2  45356
  Copyright terms: Public domain W3C validator