Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 724 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: icodiamlt 15075 issubc3 17480 clsconn 22489 txlly 22695 txnlly 22696 itg2add 24829 ftc1a 25106 f1otrg 27136 ax5seglem6 27205 axcontlem9 27243 axcontlem10 27244 clwwlkf 28312 locfinref 31693 erdszelem7 33059 poxp2 33717 nosupprefixmo 33830 noinfprefixmo 33831 nosupbnd2 33846 noinfbnd2 33861 btwnconn1lem13 34328 dfsalgen2 43770 |
Copyright terms: Public domain | W3C validator |