MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1218
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1136 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8167  poxp3  8174  icodiamlt  15471  issubc3  17900  clsconn  23454  txlly  23660  txnlly  23661  itg2add  25809  ftc1a  26093  nosupprefixmo  27760  noinfprefixmo  27761  nosupbnd2  27776  noinfbnd2  27791  mulsprop  28171  f1otrg  28894  ax5seglem6  28964  axcontlem9  29002  axcontlem10  29003  clwwlkf  30076  locfinref  33802  erdszelem7  35182  btwnconn1lem13  36081  dfsalgen2  46297  grtrimap  47851
  Copyright terms: Public domain W3C validator