| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: poxp2 8168 poxp3 8175 icodiamlt 15474 issubc3 17894 clsconn 23438 txlly 23644 txnlly 23645 itg2add 25794 ftc1a 26078 nosupprefixmo 27745 noinfprefixmo 27746 nosupbnd2 27761 noinfbnd2 27776 mulsprop 28156 f1otrg 28879 ax5seglem6 28949 axcontlem9 28987 axcontlem10 28988 clwwlkf 30066 locfinref 33840 erdszelem7 35202 btwnconn1lem13 36100 dfsalgen2 46356 grtrimap 47915 |
| Copyright terms: Public domain | W3C validator |