MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1220
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8122  poxp3  8129  icodiamlt  15404  issubc3  17811  clsconn  23317  txlly  23523  txnlly  23524  itg2add  25660  ftc1a  25944  nosupprefixmo  27612  noinfprefixmo  27613  nosupbnd2  27628  noinfbnd2  27643  mulsprop  28033  f1otrg  28798  ax5seglem6  28861  axcontlem9  28899  axcontlem10  28900  clwwlkf  29976  locfinref  33831  erdszelem7  35184  btwnconn1lem13  36087  dfsalgen2  46339  grtrimap  47947  pgn4cyclex  48116
  Copyright terms: Public domain W3C validator