MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Structured version   Visualization version   GIF version

Theorem simprl2 1220
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simprl2
StepHypRef Expression
1 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8125  poxp3  8132  icodiamlt  15411  issubc3  17818  clsconn  23324  txlly  23530  txnlly  23531  itg2add  25667  ftc1a  25951  nosupprefixmo  27619  noinfprefixmo  27620  nosupbnd2  27635  noinfbnd2  27650  mulsprop  28040  f1otrg  28805  ax5seglem6  28868  axcontlem9  28906  axcontlem10  28907  clwwlkf  29983  locfinref  33838  erdszelem7  35191  btwnconn1lem13  36094  dfsalgen2  46346  grtrimap  47951  pgn4cyclex  48120
  Copyright terms: Public domain W3C validator