| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 poxp3 8132 icodiamlt 15411 issubc3 17818 clsconn 23324 txlly 23530 txnlly 23531 itg2add 25667 ftc1a 25951 nosupprefixmo 27619 noinfprefixmo 27620 nosupbnd2 27635 noinfbnd2 27650 mulsprop 28040 f1otrg 28805 ax5seglem6 28868 axcontlem9 28906 axcontlem10 28907 clwwlkf 29983 locfinref 33838 erdszelem7 35191 btwnconn1lem13 36094 dfsalgen2 46346 grtrimap 47951 pgn4cyclex 48120 |
| Copyright terms: Public domain | W3C validator |