Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 725 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: icodiamlt 15147 issubc3 17564 clsconn 22581 txlly 22787 txnlly 22788 itg2add 24924 ftc1a 25201 f1otrg 27232 ax5seglem6 27302 axcontlem9 27340 axcontlem10 27341 clwwlkf 28411 locfinref 31791 erdszelem7 33159 poxp2 33790 nosupprefixmo 33903 noinfprefixmo 33904 nosupbnd2 33919 noinfbnd2 33934 btwnconn1lem13 34401 dfsalgen2 43880 |
Copyright terms: Public domain | W3C validator |