MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfprefixmo Structured version   Visualization version   GIF version

Theorem noinfprefixmo 27647
Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
noinfprefixmo (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥

Proof of Theorem noinfprefixmo
Dummy variables 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3217 . . . 4 (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) ↔ (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
2 breq2 5148 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑢 <s 𝑣𝑢 <s 𝑝))
32notbid 317 . . . . . . . . . . . 12 (𝑣 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑢 <s 𝑝))
4 reseq1 5974 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑣 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
54eqeq2d 2736 . . . . . . . . . . . 12 (𝑣 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
63, 5imbi12d 343 . . . . . . . . . . 11 (𝑣 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))))
7 simprl2 1216 . . . . . . . . . . . 12 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
87adantl 480 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
9 simprlr 778 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝𝐴)
106, 8, 9rspcdva 3604 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
11 breq2 5148 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑝 <s 𝑣𝑝 <s 𝑢))
1211notbid 317 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑢))
13 reseq1 5974 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑣 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))
1413eqeq2d 2736 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
1512, 14imbi12d 343 . . . . . . . . . . . 12 (𝑣 = 𝑢 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))))
16 simprr2 1219 . . . . . . . . . . . . 13 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
1716adantl 480 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
18 simprll 777 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢𝐴)
1915, 17, 18rspcdva 3604 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
20 eqcom 2732 . . . . . . . . . . 11 ((𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
2119, 20imbitrdi 250 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
22 simpl 481 . . . . . . . . . . . . 13 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐴 No )
2322, 18sseldd 3974 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢 No )
2422, 9sseldd 3974 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝 No )
25 sltso 27622 . . . . . . . . . . . . 13 <s Or No
26 soasym 5616 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑢 No 𝑝 No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2725, 26mpan 688 . . . . . . . . . . . 12 ((𝑢 No 𝑝 No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2823, 24, 27syl2anc 582 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
29 imor 851 . . . . . . . . . . 11 ((𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢) ↔ (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3028, 29sylib 217 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3110, 21, 30mpjaod 858 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
3231fveq1d 6892 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺))
33 simprl1 1215 . . . . . . . . . . 11 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢)
3433adantl 480 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ dom 𝑢)
35 sucidg 6446 . . . . . . . . . 10 (𝐺 ∈ dom 𝑢𝐺 ∈ suc 𝐺)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ suc 𝐺)
3736fvresd 6910 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢𝐺))
3836fvresd 6910 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝𝐺))
3932, 37, 383eqtr3d 2773 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = (𝑝𝐺))
40 simprl3 1217 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢𝐺) = 𝑥)
4140adantl 480 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = 𝑥)
42 simprr3 1220 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑝𝐺) = 𝑦)
4342adantl 480 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑝𝐺) = 𝑦)
4439, 41, 433eqtr3d 2773 . . . . . 6 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑥 = 𝑦)
4544expr 455 . . . . 5 ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4645rexlimdvva 3202 . . . 4 (𝐴 No → (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
471, 46biimtrrid 242 . . 3 (𝐴 No → ((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4847alrimivv 1923 . 2 (𝐴 No → ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
49 eqeq2 2737 . . . . . 6 (𝑥 = 𝑦 → ((𝑢𝐺) = 𝑥 ↔ (𝑢𝐺) = 𝑦))
50493anbi3d 1438 . . . . 5 (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
5150rexbidv 3169 . . . 4 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
52 dmeq 5901 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
5352eleq2d 2811 . . . . . 6 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
54 breq1 5147 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 <s 𝑣𝑝 <s 𝑣))
5554notbid 317 . . . . . . . 8 (𝑢 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑝 <s 𝑣))
56 reseq1 5974 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5756eqeq1d 2727 . . . . . . . 8 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
5855, 57imbi12d 343 . . . . . . 7 (𝑢 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
5958ralbidv 3168 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
60 fveq1 6889 . . . . . . 7 (𝑢 = 𝑝 → (𝑢𝐺) = (𝑝𝐺))
6160eqeq1d 2727 . . . . . 6 (𝑢 = 𝑝 → ((𝑢𝐺) = 𝑦 ↔ (𝑝𝐺) = 𝑦))
6253, 59, 613anbi123d 1432 . . . . 5 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6362cbvrexvw 3226 . . . 4 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))
6451, 63bitrdi 286 . . 3 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6564mo4 2554 . 2 (∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6648, 65sylibr 233 1 (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084  wal 1531   = wceq 1533  wcel 2098  ∃*wmo 2526  wral 3051  wrex 3060  wss 3941   class class class wbr 5144   Or wor 5584  dom cdm 5673  cres 5675  suc csuc 6367  cfv 6543   No csur 27586   <s cslt 27587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1o 8480  df-2o 8481  df-no 27589  df-slt 27590
This theorem is referenced by:  noinfno  27664  noinffv  27667
  Copyright terms: Public domain W3C validator