| Step | Hyp | Ref
| Expression |
| 1 | | reeanv 3229 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) ↔ (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
| 2 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑝 → (𝑢 <s 𝑣 ↔ 𝑢 <s 𝑝)) |
| 3 | 2 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑢 <s 𝑝)) |
| 4 | | reseq1 5991 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑝 → (𝑣 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
| 5 | 4 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
| 6 | 3, 5 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))) |
| 7 | | simprl2 1220 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 8 | 7 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 9 | | simprlr 780 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑝 ∈ 𝐴) |
| 10 | 6, 8, 9 | rspcdva 3623 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
| 11 | | breq2 5147 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (𝑝 <s 𝑣 ↔ 𝑝 <s 𝑢)) |
| 12 | 11 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑢)) |
| 13 | | reseq1 5991 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (𝑣 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)) |
| 14 | 13 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))) |
| 15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))) |
| 16 | | simprr2 1223 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 18 | | simprll 779 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑢 ∈ 𝐴) |
| 19 | 15, 17, 18 | rspcdva 3623 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))) |
| 20 | | eqcom 2744 |
. . . . . . . . . . 11
⊢ ((𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
| 21 | 19, 20 | imbitrdi 251 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
| 22 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐴 ⊆ No
) |
| 23 | 22, 18 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑢 ∈ No
) |
| 24 | 22, 9 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑝 ∈ No
) |
| 25 | | sltso 27721 |
. . . . . . . . . . . . 13
⊢ <s Or
No |
| 26 | | soasym 5625 |
. . . . . . . . . . . . 13
⊢ (( <s
Or No ∧ (𝑢 ∈ No
∧ 𝑝 ∈ No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
| 27 | 25, 26 | mpan 690 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈
No ∧ 𝑝 ∈
No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
| 28 | 23, 24, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
| 29 | | imor 854 |
. . . . . . . . . . 11
⊢ ((𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢) ↔ (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢)) |
| 30 | 28, 29 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢)) |
| 31 | 10, 21, 30 | mpjaod 861 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
| 32 | 31 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺)) |
| 33 | | simprl1 1219 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢) |
| 34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐺 ∈ dom 𝑢) |
| 35 | | sucidg 6465 |
. . . . . . . . . 10
⊢ (𝐺 ∈ dom 𝑢 → 𝐺 ∈ suc 𝐺) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐺 ∈ suc 𝐺) |
| 37 | 36 | fvresd 6926 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢‘𝐺)) |
| 38 | 36 | fvresd 6926 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝‘𝐺)) |
| 39 | 32, 37, 38 | 3eqtr3d 2785 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢‘𝐺) = (𝑝‘𝐺)) |
| 40 | | simprl3 1221 |
. . . . . . . 8
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑢‘𝐺) = 𝑥) |
| 41 | 40 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢‘𝐺) = 𝑥) |
| 42 | | simprr3 1224 |
. . . . . . . 8
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑝‘𝐺) = 𝑦) |
| 43 | 42 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑝‘𝐺) = 𝑦) |
| 44 | 39, 41, 43 | 3eqtr3d 2785 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑥 = 𝑦) |
| 45 | 44 | expr 456 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
| 46 | 45 | rexlimdvva 3213 |
. . . 4
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
| 47 | 1, 46 | biimtrrid 243 |
. . 3
⊢ (𝐴 ⊆
No → ((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
| 48 | 47 | alrimivv 1928 |
. 2
⊢ (𝐴 ⊆
No → ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
| 49 | | eqeq2 2749 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = 𝑦)) |
| 50 | 49 | 3anbi3d 1444 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
| 51 | 50 | rexbidv 3179 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
| 52 | | dmeq 5914 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
| 53 | 52 | eleq2d 2827 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) |
| 54 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑢 <s 𝑣 ↔ 𝑝 <s 𝑣)) |
| 55 | 54 | notbid 318 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑝 <s 𝑣)) |
| 56 | | reseq1 5991 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
| 57 | 56 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 58 | 55, 57 | imbi12d 344 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 59 | 58 | ralbidv 3178 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 60 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → (𝑢‘𝐺) = (𝑝‘𝐺)) |
| 61 | 60 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑢 = 𝑝 → ((𝑢‘𝐺) = 𝑦 ↔ (𝑝‘𝐺) = 𝑦)) |
| 62 | 53, 59, 61 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
| 63 | 62 | cbvrexvw 3238 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) |
| 64 | 51, 63 | bitrdi 287 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
| 65 | 64 | mo4 2566 |
. 2
⊢
(∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
| 66 | 48, 65 | sylibr 234 |
1
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |