Step | Hyp | Ref
| Expression |
1 | | reeanv 3292 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) ↔ (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
2 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑝 → (𝑢 <s 𝑣 ↔ 𝑢 <s 𝑝)) |
3 | 2 | notbid 317 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑢 <s 𝑝)) |
4 | | reseq1 5874 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑝 → (𝑣 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
5 | 4 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
6 | 3, 5 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))) |
7 | | simprl2 1217 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
8 | 7 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
9 | | simprlr 776 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑝 ∈ 𝐴) |
10 | 6, 8, 9 | rspcdva 3554 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
11 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (𝑝 <s 𝑣 ↔ 𝑝 <s 𝑢)) |
12 | 11 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑢)) |
13 | | reseq1 5874 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (𝑣 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)) |
14 | 13 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))) |
15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))) |
16 | | simprr2 1220 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
18 | | simprll 775 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑢 ∈ 𝐴) |
19 | 15, 17, 18 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))) |
20 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ ((𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
21 | 19, 20 | syl6ib 250 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
22 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐴 ⊆ No
) |
23 | 22, 18 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑢 ∈ No
) |
24 | 22, 9 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑝 ∈ No
) |
25 | | sltso 33806 |
. . . . . . . . . . . . 13
⊢ <s Or
No |
26 | | soasym 5525 |
. . . . . . . . . . . . 13
⊢ (( <s
Or No ∧ (𝑢 ∈ No
∧ 𝑝 ∈ No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
27 | 25, 26 | mpan 686 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈
No ∧ 𝑝 ∈
No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
28 | 23, 24, 27 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
29 | | imor 849 |
. . . . . . . . . . 11
⊢ ((𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢) ↔ (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢)) |
30 | 28, 29 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢)) |
31 | 10, 21, 30 | mpjaod 856 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
32 | 31 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺)) |
33 | | simprl1 1216 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢) |
34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐺 ∈ dom 𝑢) |
35 | | sucidg 6329 |
. . . . . . . . . 10
⊢ (𝐺 ∈ dom 𝑢 → 𝐺 ∈ suc 𝐺) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝐺 ∈ suc 𝐺) |
37 | 36 | fvresd 6776 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢‘𝐺)) |
38 | 36 | fvresd 6776 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝‘𝐺)) |
39 | 32, 37, 38 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢‘𝐺) = (𝑝‘𝐺)) |
40 | | simprl3 1218 |
. . . . . . . 8
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑢‘𝐺) = 𝑥) |
41 | 40 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑢‘𝐺) = 𝑥) |
42 | | simprr3 1221 |
. . . . . . . 8
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑝‘𝐺) = 𝑦) |
43 | 42 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → (𝑝‘𝐺) = 𝑦) |
44 | 39, 41, 43 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ ((𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → 𝑥 = 𝑦) |
45 | 44 | expr 456 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
46 | 45 | rexlimdvva 3222 |
. . . 4
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
47 | 1, 46 | syl5bir 242 |
. . 3
⊢ (𝐴 ⊆
No → ((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
48 | 47 | alrimivv 1932 |
. 2
⊢ (𝐴 ⊆
No → ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
49 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = 𝑦)) |
50 | 49 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
51 | 50 | rexbidv 3225 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
52 | | dmeq 5801 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
53 | 52 | eleq2d 2824 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) |
54 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑢 <s 𝑣 ↔ 𝑝 <s 𝑣)) |
55 | 54 | notbid 317 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑝 <s 𝑣)) |
56 | | reseq1 5874 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
57 | 56 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
58 | 55, 57 | imbi12d 344 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
59 | 58 | ralbidv 3120 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
60 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → (𝑢‘𝐺) = (𝑝‘𝐺)) |
61 | 60 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑢 = 𝑝 → ((𝑢‘𝐺) = 𝑦 ↔ (𝑝‘𝐺) = 𝑦)) |
62 | 53, 59, 61 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
63 | 62 | cbvrexvw 3373 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) |
64 | 51, 63 | bitrdi 286 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
65 | 64 | mo4 2566 |
. 2
⊢
(∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
66 | 48, 65 | sylibr 233 |
1
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |