MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Visualization version   GIF version

Theorem issubc3 17797
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 18718, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h 𝐻 = (Homf𝐶)
issubc3.i 1 = (Id‘𝐶)
issubc3.1 𝐷 = (𝐶cat 𝐽)
issubc3.c (𝜑𝐶 ∈ Cat)
issubc3.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝐽   𝑥,𝑆
Allowed substitution hint:   1 (𝑥)

Proof of Theorem issubc3
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ∈ (Subcat‘𝐶))
2 issubc3.h . . . 4 𝐻 = (Homf𝐶)
31, 2subcssc 17788 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽cat 𝐻)
41adantr 480 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
5 issubc3.a . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
65ad2antrr 723 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
7 simpr 484 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝑥𝑆)
8 issubc3.i . . . . 5 1 = (Id‘𝐶)
94, 6, 7, 8subcidcl 17792 . . . 4 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
109ralrimiva 3138 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
11 issubc3.1 . . . 4 𝐷 = (𝐶cat 𝐽)
1211, 1subccat 17796 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐷 ∈ Cat)
133, 10, 123jca 1125 . 2 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
14 simpr1 1191 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽cat 𝐻)
15 simpr2 1192 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
16 eqid 2724 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2724 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqid 2724 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
19 simplrr 775 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐷 ∈ Cat)
20 simprl1 1215 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
21 eqid 2724 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
22 issubc3.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
2322ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
245ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
252, 21homffn 17635 . . . . . . . . . . . . . 14 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
2625a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 simplrl 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽cat 𝐻)
2824, 26, 27ssc1 17766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
2911, 21, 23, 24, 28rescbas 17774 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 = (Base‘𝐷))
3020, 29eleqtrd 2827 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐷))
31 simprl2 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3231, 29eleqtrd 2827 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐷))
33 simprl3 1217 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
3433, 29eleqtrd 2827 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐷))
35 simprrl 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥𝐽𝑦))
3611, 21, 23, 24, 28reschom 17776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 = (Hom ‘𝐷))
3736oveqd 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3835, 37eleqtrd 2827 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
39 simprrr 779 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦𝐽𝑧))
4036oveqd 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧))
4139, 40eleqtrd 2827 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 17627 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧))
43 eqid 2724 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
4411, 21, 23, 24, 28, 43rescco 17778 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (comp‘𝐶) = (comp‘𝐷))
4544oveqd 7418 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
4645oveqd 7418 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
4736oveqd 7418 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑧) = (𝑥(Hom ‘𝐷)𝑧))
4842, 46, 473eltr4d 2840 . . . . . . . 8 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
4948anassrs 467 . . . . . . 7 ((((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5049ralrimivva 3192 . . . . . 6 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5150ralrimivvva 3195 . . . . 5 ((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
52513adantr2 1167 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
53 r19.26 3103 . . . 4 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5415, 52, 53sylanbrc 582 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5522adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
565adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 Fn (𝑆 × 𝑆))
572, 8, 43, 55, 56issubc2 17784 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
5814, 54, 57mpbir2and 710 . 2 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ∈ (Subcat‘𝐶))
5913, 58impbida 798 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  cop 4626   class class class wbr 5138   × cxp 5664   Fn wfn 6528  cfv 6533  (class class class)co 7401  Basecbs 17142  Hom chom 17206  compcco 17207  Catccat 17606  Idccid 17607  Homf chomf 17608  cat cssc 17752  cat cresc 17753  Subcatcsubc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-hom 17219  df-cco 17220  df-cat 17610  df-cid 17611  df-homf 17612  df-ssc 17755  df-resc 17756  df-subc 17757
This theorem is referenced by:  subsubc  17801
  Copyright terms: Public domain W3C validator