Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ∈ (Subcat‘𝐶)) |
2 | | issubc3.h |
. . . 4
⊢ 𝐻 = (Homf
‘𝐶) |
3 | 1, 2 | subcssc 17217 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ⊆cat 𝐻) |
4 | 1 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (Subcat‘𝐶)) |
5 | | issubc3.a |
. . . . . 6
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
6 | 5 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝐽 Fn (𝑆 × 𝑆)) |
7 | | simpr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
8 | | issubc3.i |
. . . . 5
⊢ 1 =
(Id‘𝐶) |
9 | 4, 6, 7, 8 | subcidcl 17221 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥 ∈ 𝑆) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
10 | 9 | ralrimiva 3096 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
11 | | issubc3.1 |
. . . 4
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
12 | 11, 1 | subccat 17225 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → 𝐷 ∈ Cat) |
13 | 3, 10, 12 | 3jca 1129 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) |
14 | | simpr1 1195 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ⊆cat 𝐻) |
15 | | simpr2 1196 |
. . . 4
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢
(comp‘𝐷) =
(comp‘𝐷) |
19 | | simplrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐷 ∈ Cat) |
20 | | simprl1 1219 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ 𝑆) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐶) =
(Base‘𝐶) |
22 | | issubc3.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ Cat) |
23 | 22 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat) |
24 | 5 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆)) |
25 | 2, 21 | homffn 17069 |
. . . . . . . . . . . . . 14
⊢ 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))) |
27 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 ⊆cat 𝐻) |
28 | 24, 26, 27 | ssc1 17198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶)) |
29 | 11, 21, 23, 24, 28 | rescbas 17206 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 = (Base‘𝐷)) |
30 | 20, 29 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐷)) |
31 | | simprl2 1220 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ 𝑆) |
32 | 31, 29 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐷)) |
33 | | simprl3 1221 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ 𝑆) |
34 | 33, 29 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐷)) |
35 | | simprrl 781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥𝐽𝑦)) |
36 | 11, 21, 23, 24, 28 | reschom 17207 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 = (Hom ‘𝐷)) |
37 | 36 | oveqd 7189 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
38 | 35, 37 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)) |
39 | | simprrr 782 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦𝐽𝑧)) |
40 | 36 | oveqd 7189 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧)) |
41 | 39, 40 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
42 | 16, 17, 18, 19, 30, 32, 34, 38, 41 | catcocl 17061 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧)) |
43 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(comp‘𝐶) =
(comp‘𝐶) |
44 | 11, 21, 23, 24, 28, 43 | rescco 17209 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (comp‘𝐶) = (comp‘𝐷)) |
45 | 44 | oveqd 7189 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐷)𝑧)) |
46 | 45 | oveqd 7189 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
47 | 36 | oveqd 7189 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑧) = (𝑥(Hom ‘𝐷)𝑧)) |
48 | 42, 46, 47 | 3eltr4d 2848 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
49 | 48 | anassrs 471 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
50 | 49 | ralrimivva 3103 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
51 | 50 | ralrimivvva 3104 |
. . . . 5
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
52 | 51 | 3adantr2 1171 |
. . . 4
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
53 | | r19.26 3084 |
. . . 4
⊢
(∀𝑥 ∈
𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
54 | 15, 52, 53 | sylanbrc 586 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
55 | 22 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat) |
56 | 5 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 Fn (𝑆 × 𝑆)) |
57 | 2, 8, 43, 55, 56 | issubc2 17213 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
58 | 14, 54, 57 | mpbir2and 713 |
. 2
⊢ ((𝜑 ∧ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ∈ (Subcat‘𝐶)) |
59 | 13, 58 | impbida 801 |
1
⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))) |