MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Visualization version   GIF version

Theorem issubc3 17774
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 18696, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h 𝐻 = (Homf𝐶)
issubc3.i 1 = (Id‘𝐶)
issubc3.1 𝐷 = (𝐶cat 𝐽)
issubc3.c (𝜑𝐶 ∈ Cat)
issubc3.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝐽   𝑥,𝑆
Allowed substitution hint:   1 (𝑥)

Proof of Theorem issubc3
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ∈ (Subcat‘𝐶))
2 issubc3.h . . . 4 𝐻 = (Homf𝐶)
31, 2subcssc 17765 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽cat 𝐻)
41adantr 480 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
5 issubc3.a . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
65ad2antrr 726 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
7 simpr 484 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝑥𝑆)
8 issubc3.i . . . . 5 1 = (Id‘𝐶)
94, 6, 7, 8subcidcl 17769 . . . 4 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
109ralrimiva 3121 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
11 issubc3.1 . . . 4 𝐷 = (𝐶cat 𝐽)
1211, 1subccat 17773 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐷 ∈ Cat)
133, 10, 123jca 1128 . 2 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
14 simpr1 1195 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽cat 𝐻)
15 simpr2 1196 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
16 eqid 2729 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqid 2729 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
19 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐷 ∈ Cat)
20 simprl1 1219 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
21 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
22 issubc3.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
2322ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
245ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
252, 21homffn 17617 . . . . . . . . . . . . . 14 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
2625a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽cat 𝐻)
2824, 26, 27ssc1 17746 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
2911, 21, 23, 24, 28rescbas 17754 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 = (Base‘𝐷))
3020, 29eleqtrd 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐷))
31 simprl2 1220 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3231, 29eleqtrd 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐷))
33 simprl3 1221 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
3433, 29eleqtrd 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐷))
35 simprrl 780 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥𝐽𝑦))
3611, 21, 23, 24, 28reschom 17755 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 = (Hom ‘𝐷))
3736oveqd 7370 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3835, 37eleqtrd 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
39 simprrr 781 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦𝐽𝑧))
4036oveqd 7370 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧))
4139, 40eleqtrd 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 17609 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧))
43 eqid 2729 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
4411, 21, 23, 24, 28, 43rescco 17757 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (comp‘𝐶) = (comp‘𝐷))
4544oveqd 7370 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
4645oveqd 7370 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
4736oveqd 7370 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑧) = (𝑥(Hom ‘𝐷)𝑧))
4842, 46, 473eltr4d 2843 . . . . . . . 8 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
4948anassrs 467 . . . . . . 7 ((((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5049ralrimivva 3172 . . . . . 6 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5150ralrimivvva 3175 . . . . 5 ((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
52513adantr2 1171 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
53 r19.26 3089 . . . 4 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5415, 52, 53sylanbrc 583 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5522adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
565adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 Fn (𝑆 × 𝑆))
572, 8, 43, 55, 56issubc2 17761 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
5814, 54, 57mpbir2and 713 . 2 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ∈ (Subcat‘𝐶))
5913, 58impbida 800 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4585   class class class wbr 5095   × cxp 5621   Fn wfn 6481  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Homf chomf 17590  cat cssc 17732  cat cresc 17733  Subcatcsubc 17734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-homf 17594  df-ssc 17735  df-resc 17736  df-subc 17737
This theorem is referenced by:  subsubc  17778
  Copyright terms: Public domain W3C validator