MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Visualization version   GIF version

Theorem issubc3 17480
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 18358, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h 𝐻 = (Homf𝐶)
issubc3.i 1 = (Id‘𝐶)
issubc3.1 𝐷 = (𝐶cat 𝐽)
issubc3.c (𝜑𝐶 ∈ Cat)
issubc3.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝐽   𝑥,𝑆
Allowed substitution hint:   1 (𝑥)

Proof of Theorem issubc3
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ∈ (Subcat‘𝐶))
2 issubc3.h . . . 4 𝐻 = (Homf𝐶)
31, 2subcssc 17471 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽cat 𝐻)
41adantr 480 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
5 issubc3.a . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
65ad2antrr 722 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
7 simpr 484 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝑥𝑆)
8 issubc3.i . . . . 5 1 = (Id‘𝐶)
94, 6, 7, 8subcidcl 17475 . . . 4 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
109ralrimiva 3107 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
11 issubc3.1 . . . 4 𝐷 = (𝐶cat 𝐽)
1211, 1subccat 17479 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐷 ∈ Cat)
133, 10, 123jca 1126 . 2 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
14 simpr1 1192 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽cat 𝐻)
15 simpr2 1193 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
16 eqid 2738 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqid 2738 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
19 simplrr 774 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐷 ∈ Cat)
20 simprl1 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
21 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
22 issubc3.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
2322ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
245ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
252, 21homffn 17319 . . . . . . . . . . . . . 14 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
2625a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 simplrl 773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽cat 𝐻)
2824, 26, 27ssc1 17450 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
2911, 21, 23, 24, 28rescbas 17458 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 = (Base‘𝐷))
3020, 29eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐷))
31 simprl2 1217 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3231, 29eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐷))
33 simprl3 1218 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
3433, 29eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐷))
35 simprrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥𝐽𝑦))
3611, 21, 23, 24, 28reschom 17460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 = (Hom ‘𝐷))
3736oveqd 7272 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3835, 37eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
39 simprrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦𝐽𝑧))
4036oveqd 7272 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧))
4139, 40eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 17311 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧))
43 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
4411, 21, 23, 24, 28, 43rescco 17462 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (comp‘𝐶) = (comp‘𝐷))
4544oveqd 7272 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
4645oveqd 7272 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
4736oveqd 7272 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑧) = (𝑥(Hom ‘𝐷)𝑧))
4842, 46, 473eltr4d 2854 . . . . . . . 8 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
4948anassrs 467 . . . . . . 7 ((((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5049ralrimivva 3114 . . . . . 6 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5150ralrimivvva 3115 . . . . 5 ((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
52513adantr2 1168 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
53 r19.26 3094 . . . 4 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5415, 52, 53sylanbrc 582 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5522adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
565adantr 480 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 Fn (𝑆 × 𝑆))
572, 8, 43, 55, 56issubc2 17467 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
5814, 54, 57mpbir2and 709 . 2 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ∈ (Subcat‘𝐶))
5913, 58impbida 797 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564   class class class wbr 5070   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Homf chomf 17292  cat cssc 17436  cat cresc 17437  Subcatcsubc 17438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-homf 17296  df-ssc 17439  df-resc 17440  df-subc 17441
This theorem is referenced by:  subsubc  17484
  Copyright terms: Public domain W3C validator