MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   GIF version

Theorem axcontlem10 27339
Description: Lemma for axcont 27342. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem10.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑝,𝑥   𝐵,𝑏,𝑝,𝑥,𝑦   𝐷,𝑝,𝑡,𝑥   𝐹,𝑏   𝑖,𝐹,𝑝,𝑡,𝑥   𝑦,𝐹   𝑁,𝑏   𝑖,𝑁,𝑝,𝑡,𝑥   𝑦,𝑁   𝑈,𝑏   𝑈,𝑖,𝑝,𝑡,𝑥   𝑦,𝑈   𝑍,𝑏   𝑖,𝑍,𝑝,𝑡,𝑥   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑏)

Proof of Theorem axcontlem10
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5979 . . . . 5 (𝐹𝐴) ⊆ ran 𝐹
2 simpll 764 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
3 simprl1 1217 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
4 simplr1 1214 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
5 simprl2 1218 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
64, 5sseldd 3927 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
7 simprr 770 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
8 axcontlem10.1 . . . . . . . 8 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
9 axcontlem10.2 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
108, 9axcontlem2 27331 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
112, 3, 6, 7, 10syl31anc 1372 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
12 f1ofo 6721 . . . . . 6 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷onto→(0[,)+∞))
13 forn 6689 . . . . . 6 (𝐹:𝐷onto→(0[,)+∞) → ran 𝐹 = (0[,)+∞))
1411, 12, 133syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ran 𝐹 = (0[,)+∞))
151, 14sseqtrid 3978 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ (0[,)+∞))
16 rge0ssre 13187 . . . 4 (0[,)+∞) ⊆ ℝ
1715, 16sstrdi 3938 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ ℝ)
18 imassrn 5979 . . . . 5 (𝐹𝐵) ⊆ ran 𝐹
1918, 14sseqtrid 3978 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ (0[,)+∞))
2019, 16sstrdi 3938 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ ℝ)
218, 9axcontlem9 27338 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛)
22 dedekindle 11139 . . 3 (((𝐹𝐴) ⊆ ℝ ∧ (𝐹𝐵) ⊆ ℝ ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
2317, 20, 21, 22syl3anc 1370 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
24 simpr 485 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
25 simprl3 1219 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ≠ ∅)
2625ad2antrr 723 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝐵 ≠ ∅)
27 n0 4286 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
2826, 27sylib 217 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → ∃𝑏 𝑏𝐵)
29 0red 10979 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ∈ ℝ)
30 f1of 6714 . . . . . . . . . . . . . . . 16 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
3111, 30syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷⟶(0[,)+∞))
328axcontlem4 27333 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3332, 5sseldd 3927 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐷)
3431, 33ffvelrnd 6959 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (0[,)+∞))
3516, 34sselid 3924 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ ℝ)
3635ad2antrr 723 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ ℝ)
37 simprl 768 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 𝑘 ∈ ℝ)
38 elrege0 13185 . . . . . . . . . . . . . . 15 ((𝐹𝑈) ∈ (0[,)+∞) ↔ ((𝐹𝑈) ∈ ℝ ∧ 0 ≤ (𝐹𝑈)))
3938simprbi 497 . . . . . . . . . . . . . 14 ((𝐹𝑈) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑈))
4034, 39syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 0 ≤ (𝐹𝑈))
4140ad2antrr 723 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ (𝐹𝑈))
42 f1of1 6713 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷1-1→(0[,)+∞))
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1→(0[,)+∞))
44 f1elima 7133 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑈𝐷𝐴𝐷) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
4543, 33, 32, 44syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
465, 45mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (𝐹𝐴))
4746adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ (𝐹𝐴))
48 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐵)
4943adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐹:𝐷1-1→(0[,)+∞))
50 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍 ∈ (𝔼‘𝑁))
51 simpl2 1191 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑈𝐴)
52 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍𝑈)
5350, 51, 523jca 1127 . . . . . . . . . . . . . . . . . . . . 21 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈))
548axcontlem3 27332 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
5553, 54sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
5655sselda 3926 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐷)
5755adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐵𝐷)
58 f1elima 7133 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑏𝐷𝐵𝐷) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
5949, 56, 57, 58syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
6048, 59mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ (𝐹𝐵))
6160adantrl 713 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ (𝐹𝐵))
6247, 61jca 512 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)))
63 breq1 5082 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐹𝑈) → (𝑚𝑘 ↔ (𝐹𝑈) ≤ 𝑘))
6463anbi1d 630 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑈) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘𝑛)))
65 breq2 5083 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐹𝑏) → (𝑘𝑛𝑘 ≤ (𝐹𝑏)))
6665anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑏) → (((𝐹𝑈) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏))))
6764, 66rspc2va 3572 . . . . . . . . . . . . . . 15 ((((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6862, 67sylan 580 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6968an32s 649 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
7069simpld 495 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ≤ 𝑘)
7129, 36, 37, 41, 70letrd 11132 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ 𝑘)
7271expr 457 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (𝑏𝐵 → 0 ≤ 𝑘))
7372exlimdv 1940 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (∃𝑏 𝑏𝐵 → 0 ≤ 𝑘))
7428, 73mpd 15 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 0 ≤ 𝑘)
75 elrege0 13185 . . . . . . . 8 (𝑘 ∈ (0[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
7624, 74, 75sylanbrc 583 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ (0[,)+∞))
7776ex 413 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → 𝑘 ∈ (0[,)+∞)))
788ssrab3 4020 . . . . . . . . 9 𝐷 ⊆ (𝔼‘𝑁)
79 simpr 485 . . . . . . . . . 10 ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) → 𝑘 ∈ (0[,)+∞))
80 f1ocnvdm 7153 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹𝑘) ∈ 𝐷)
8111, 79, 80syl2an 596 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ 𝐷)
8278, 81sselid 3924 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ (𝔼‘𝑁))
832, 3, 63jca 1127 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
8483, 7jca 512 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8584adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8632sselda 3926 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑞𝐴) → 𝑞𝐷)
8786adantrr 714 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑞𝐷)
8887adantrl 713 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑞𝐷)
89 simplr 766 . . . . . . . . . . . . . . 15 (((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑘 ∈ (0[,)+∞))
9011, 89, 80syl2an 596 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) ∈ 𝐷)
9155sselda 3926 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑟𝐵) → 𝑟𝐷)
9291adantrl 713 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑟𝐷)
9392adantrl 713 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑟𝐷)
9488, 90, 933jca 1127 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷))
9585, 94jca 512 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)))
96 f1ofun 6716 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
9711, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → Fun 𝐹)
98 fdm 6607 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷⟶(0[,)+∞) → dom 𝐹 = 𝐷)
9911, 30, 983syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → dom 𝐹 = 𝐷)
10032, 99sseqtrrd 3967 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ dom 𝐹)
101 funfvima2 7104 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10355, 99sseqtrrd 3967 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ⊆ dom 𝐹)
104 funfvima2 7104 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
10597, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
106102, 105anim12d 609 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑞𝐴𝑟𝐵) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵))))
107106imp 407 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
108107adantrl 713 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
109 simprll 776 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
110 breq1 5082 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑞) → (𝑚𝑘 ↔ (𝐹𝑞) ≤ 𝑘))
111110anbi1d 630 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑞) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘𝑛)))
112 breq2 5083 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑟) → (𝑘𝑛𝑘 ≤ (𝐹𝑟)))
113112anbi2d 629 . . . . . . . . . . . . . . 15 (𝑛 = (𝐹𝑟) → (((𝐹𝑞) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
114111, 113rspc2v 3571 . . . . . . . . . . . . . 14 (((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
115108, 109, 114sylc 65 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟)))
116 f1ocnvfv2 7146 . . . . . . . . . . . . . . . 16 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹‘(𝐹𝑘)) = 𝑘)
11711, 89, 116syl2an 596 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹‘(𝐹𝑘)) = 𝑘)
118117breq2d 5091 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ↔ (𝐹𝑞) ≤ 𝑘))
119117breq1d 5089 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟) ↔ 𝑘 ≤ (𝐹𝑟)))
120118, 119anbi12d 631 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
121115, 120mpbird 256 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)))
1228, 9axcontlem8 27337 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩))
12395, 121, 122sylc 65 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
124123anassrs 468 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) ∧ (𝑞𝐴𝑟𝐵)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
125124ralrimivva 3117 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
126 opeq1 4810 . . . . . . . . . . 11 (𝑞 = 𝑥 → ⟨𝑞, 𝑟⟩ = ⟨𝑥, 𝑟⟩)
127126breq2d 5091 . . . . . . . . . 10 (𝑞 = 𝑥 → ((𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩))
128 opeq2 4811 . . . . . . . . . . 11 (𝑟 = 𝑦 → ⟨𝑥, 𝑟⟩ = ⟨𝑥, 𝑦⟩)
129128breq2d 5091 . . . . . . . . . 10 (𝑟 = 𝑦 → ((𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
130127, 129cbvral2vw 3394 . . . . . . . . 9 (∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
131125, 130sylib 217 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
132 breq1 5082 . . . . . . . . . 10 (𝑏 = (𝐹𝑘) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
1331322ralbidv 3125 . . . . . . . . 9 (𝑏 = (𝐹𝑘) → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
134133rspcev 3561 . . . . . . . 8 (((𝐹𝑘) ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
13582, 131, 134syl2anc 584 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
136135expr 457 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ (0[,)+∞) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
13777, 136syld 47 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
138137ex 413 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
139138com23 86 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑘 ∈ ℝ → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
140139rexlimdv 3214 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
14123, 140mpd 15 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  {crab 3070  wss 3892  c0 4262  cop 4573   class class class wbr 5079  {copab 5141  ccnv 5589  dom cdm 5590  ran crn 5591  cima 5593  Fun wfun 6426  wf 6428  1-1wf1 6429  ontowfo 6430  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007  cle 11011  cmin 11205  cn 11973  [,)cico 13080  ...cfz 13238  𝔼cee 27254   Btwn cbtwn 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-z 12320  df-uz 12582  df-ico 13084  df-icc 13085  df-fz 13239  df-ee 27257  df-btwn 27258
This theorem is referenced by:  axcontlem11  27340
  Copyright terms: Public domain W3C validator