MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   GIF version

Theorem axcontlem10 28957
Description: Lemma for axcont 28960. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem10.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑝,𝑥   𝑁,𝑏,𝑝,𝑥,𝑦   𝑖,𝑍,𝑡   𝑍,𝑏,𝑝,𝑥,𝑦   𝐵,𝑏,𝑝,𝑥,𝑦   𝑖,𝐹,𝑡   𝐹,𝑏,𝑝,𝑥,𝑦   𝑈,𝑏,𝑦   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑁,𝑡   𝐷,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑏)

Proof of Theorem axcontlem10
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6063 . . . . 5 (𝐹𝐴) ⊆ ran 𝐹
2 simpll 766 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
3 simprl1 1219 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
4 simplr1 1216 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
5 simprl2 1220 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
64, 5sseldd 3964 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
7 simprr 772 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
8 axcontlem10.1 . . . . . . . 8 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
9 axcontlem10.2 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
108, 9axcontlem2 28949 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
112, 3, 6, 7, 10syl31anc 1375 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
12 f1ofo 6830 . . . . . 6 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷onto→(0[,)+∞))
13 forn 6798 . . . . . 6 (𝐹:𝐷onto→(0[,)+∞) → ran 𝐹 = (0[,)+∞))
1411, 12, 133syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ran 𝐹 = (0[,)+∞))
151, 14sseqtrid 4006 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ (0[,)+∞))
16 rge0ssre 13478 . . . 4 (0[,)+∞) ⊆ ℝ
1715, 16sstrdi 3976 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ ℝ)
18 imassrn 6063 . . . . 5 (𝐹𝐵) ⊆ ran 𝐹
1918, 14sseqtrid 4006 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ (0[,)+∞))
2019, 16sstrdi 3976 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ ℝ)
218, 9axcontlem9 28956 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛)
22 dedekindle 11404 . . 3 (((𝐹𝐴) ⊆ ℝ ∧ (𝐹𝐵) ⊆ ℝ ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
2317, 20, 21, 22syl3anc 1373 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
24 simpr 484 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
25 simprl3 1221 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ≠ ∅)
2625ad2antrr 726 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝐵 ≠ ∅)
27 n0 4333 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
2826, 27sylib 218 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → ∃𝑏 𝑏𝐵)
29 0red 11243 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ∈ ℝ)
30 f1of 6823 . . . . . . . . . . . . . . . 16 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
3111, 30syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷⟶(0[,)+∞))
328axcontlem4 28951 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3332, 5sseldd 3964 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐷)
3431, 33ffvelcdmd 7080 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (0[,)+∞))
3516, 34sselid 3961 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ ℝ)
3635ad2antrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ ℝ)
37 simprl 770 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 𝑘 ∈ ℝ)
38 elrege0 13476 . . . . . . . . . . . . . . 15 ((𝐹𝑈) ∈ (0[,)+∞) ↔ ((𝐹𝑈) ∈ ℝ ∧ 0 ≤ (𝐹𝑈)))
3938simprbi 496 . . . . . . . . . . . . . 14 ((𝐹𝑈) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑈))
4034, 39syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 0 ≤ (𝐹𝑈))
4140ad2antrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ (𝐹𝑈))
42 f1of1 6822 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷1-1→(0[,)+∞))
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1→(0[,)+∞))
44 f1elima 7261 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑈𝐷𝐴𝐷) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
4543, 33, 32, 44syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
465, 45mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (𝐹𝐴))
4746adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ (𝐹𝐴))
48 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐵)
4943adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐹:𝐷1-1→(0[,)+∞))
50 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍 ∈ (𝔼‘𝑁))
51 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑈𝐴)
52 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍𝑈)
5350, 51, 523jca 1128 . . . . . . . . . . . . . . . . . . . . 21 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈))
548axcontlem3 28950 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
5553, 54sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
5655sselda 3963 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐷)
5755adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐵𝐷)
58 f1elima 7261 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑏𝐷𝐵𝐷) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
5949, 56, 57, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
6048, 59mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ (𝐹𝐵))
6160adantrl 716 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ (𝐹𝐵))
6247, 61jca 511 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)))
63 breq1 5127 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐹𝑈) → (𝑚𝑘 ↔ (𝐹𝑈) ≤ 𝑘))
6463anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑈) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘𝑛)))
65 breq2 5128 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐹𝑏) → (𝑘𝑛𝑘 ≤ (𝐹𝑏)))
6665anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑏) → (((𝐹𝑈) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏))))
6764, 66rspc2va 3618 . . . . . . . . . . . . . . 15 ((((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6862, 67sylan 580 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6968an32s 652 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
7069simpld 494 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ≤ 𝑘)
7129, 36, 37, 41, 70letrd 11397 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ 𝑘)
7271expr 456 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (𝑏𝐵 → 0 ≤ 𝑘))
7372exlimdv 1933 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (∃𝑏 𝑏𝐵 → 0 ≤ 𝑘))
7428, 73mpd 15 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 0 ≤ 𝑘)
75 elrege0 13476 . . . . . . . 8 (𝑘 ∈ (0[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
7624, 74, 75sylanbrc 583 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ (0[,)+∞))
7776ex 412 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → 𝑘 ∈ (0[,)+∞)))
788ssrab3 4062 . . . . . . . . 9 𝐷 ⊆ (𝔼‘𝑁)
79 simpr 484 . . . . . . . . . 10 ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) → 𝑘 ∈ (0[,)+∞))
80 f1ocnvdm 7283 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹𝑘) ∈ 𝐷)
8111, 79, 80syl2an 596 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ 𝐷)
8278, 81sselid 3961 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ (𝔼‘𝑁))
832, 3, 63jca 1128 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
8483, 7jca 511 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8584adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8632sselda 3963 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑞𝐴) → 𝑞𝐷)
8786adantrr 717 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑞𝐷)
8887adantrl 716 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑞𝐷)
89 simplr 768 . . . . . . . . . . . . . . 15 (((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑘 ∈ (0[,)+∞))
9011, 89, 80syl2an 596 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) ∈ 𝐷)
9155sselda 3963 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑟𝐵) → 𝑟𝐷)
9291adantrl 716 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑟𝐷)
9392adantrl 716 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑟𝐷)
9488, 90, 933jca 1128 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷))
9585, 94jca 511 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)))
96 f1ofun 6825 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
9711, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → Fun 𝐹)
98 fdm 6720 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷⟶(0[,)+∞) → dom 𝐹 = 𝐷)
9911, 30, 983syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → dom 𝐹 = 𝐷)
10032, 99sseqtrrd 4001 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ dom 𝐹)
101 funfvima2 7228 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10355, 99sseqtrrd 4001 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ⊆ dom 𝐹)
104 funfvima2 7228 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
10597, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
106102, 105anim12d 609 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑞𝐴𝑟𝐵) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵))))
107106imp 406 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
108107adantrl 716 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
109 simprll 778 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
110 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑞) → (𝑚𝑘 ↔ (𝐹𝑞) ≤ 𝑘))
111110anbi1d 631 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑞) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘𝑛)))
112 breq2 5128 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑟) → (𝑘𝑛𝑘 ≤ (𝐹𝑟)))
113112anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = (𝐹𝑟) → (((𝐹𝑞) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
114111, 113rspc2v 3617 . . . . . . . . . . . . . 14 (((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
115108, 109, 114sylc 65 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟)))
116 f1ocnvfv2 7275 . . . . . . . . . . . . . . . 16 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹‘(𝐹𝑘)) = 𝑘)
11711, 89, 116syl2an 596 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹‘(𝐹𝑘)) = 𝑘)
118117breq2d 5136 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ↔ (𝐹𝑞) ≤ 𝑘))
119117breq1d 5134 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟) ↔ 𝑘 ≤ (𝐹𝑟)))
120118, 119anbi12d 632 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
121115, 120mpbird 257 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)))
1228, 9axcontlem8 28955 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩))
12395, 121, 122sylc 65 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
124123anassrs 467 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) ∧ (𝑞𝐴𝑟𝐵)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
125124ralrimivva 3188 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
126 opeq1 4854 . . . . . . . . . . 11 (𝑞 = 𝑥 → ⟨𝑞, 𝑟⟩ = ⟨𝑥, 𝑟⟩)
127126breq2d 5136 . . . . . . . . . 10 (𝑞 = 𝑥 → ((𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩))
128 opeq2 4855 . . . . . . . . . . 11 (𝑟 = 𝑦 → ⟨𝑥, 𝑟⟩ = ⟨𝑥, 𝑦⟩)
129128breq2d 5136 . . . . . . . . . 10 (𝑟 = 𝑦 → ((𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
130127, 129cbvral2vw 3228 . . . . . . . . 9 (∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
131125, 130sylib 218 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
132 breq1 5127 . . . . . . . . . 10 (𝑏 = (𝐹𝑘) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
1331322ralbidv 3209 . . . . . . . . 9 (𝑏 = (𝐹𝑘) → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
134133rspcev 3606 . . . . . . . 8 (((𝐹𝑘) ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
13582, 131, 134syl2anc 584 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
136135expr 456 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ (0[,)+∞) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
13777, 136syld 47 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
138137ex 412 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
139138com23 86 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑘 ∈ ℝ → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
140139rexlimdv 3140 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
14123, 140mpd 15 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  wss 3931  c0 4313  cop 4612   class class class wbr 5124  {copab 5186  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  cle 11275  cmin 11471  cn 12245  [,)cico 13369  ...cfz 13529  𝔼cee 28872   Btwn cbtwn 28873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-z 12594  df-uz 12858  df-ico 13373  df-icc 13374  df-fz 13530  df-ee 28875  df-btwn 28876
This theorem is referenced by:  axcontlem11  28958
  Copyright terms: Public domain W3C validator