MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   GIF version

Theorem axcontlem10 26771
Description: Lemma for axcont 26774. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem10.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑝,𝑥   𝐵,𝑏,𝑝,𝑥,𝑦   𝐷,𝑝,𝑡,𝑥   𝐹,𝑏   𝑖,𝐹,𝑝,𝑡,𝑥   𝑦,𝐹   𝑁,𝑏   𝑖,𝑁,𝑝,𝑡,𝑥   𝑦,𝑁   𝑈,𝑏   𝑈,𝑖,𝑝,𝑡,𝑥   𝑦,𝑈   𝑍,𝑏   𝑖,𝑍,𝑝,𝑡,𝑥   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑏)

Proof of Theorem axcontlem10
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5911 . . . . 5 (𝐹𝐴) ⊆ ran 𝐹
2 simpll 766 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
3 simprl1 1215 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
4 simplr1 1212 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
5 simprl2 1216 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
64, 5sseldd 3919 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
7 simprr 772 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
8 axcontlem10.1 . . . . . . . 8 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
9 axcontlem10.2 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
108, 9axcontlem2 26763 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
112, 3, 6, 7, 10syl31anc 1370 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
12 f1ofo 6601 . . . . . 6 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷onto→(0[,)+∞))
13 forn 6572 . . . . . 6 (𝐹:𝐷onto→(0[,)+∞) → ran 𝐹 = (0[,)+∞))
1411, 12, 133syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ran 𝐹 = (0[,)+∞))
151, 14sseqtrid 3970 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ (0[,)+∞))
16 rge0ssre 12838 . . . 4 (0[,)+∞) ⊆ ℝ
1715, 16sstrdi 3930 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ ℝ)
18 imassrn 5911 . . . . 5 (𝐹𝐵) ⊆ ran 𝐹
1918, 14sseqtrid 3970 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ (0[,)+∞))
2019, 16sstrdi 3930 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ ℝ)
218, 9axcontlem9 26770 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛)
22 dedekindle 10797 . . 3 (((𝐹𝐴) ⊆ ℝ ∧ (𝐹𝐵) ⊆ ℝ ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
2317, 20, 21, 22syl3anc 1368 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
24 simpr 488 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
25 simprl3 1217 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ≠ ∅)
2625ad2antrr 725 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝐵 ≠ ∅)
27 n0 4263 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
2826, 27sylib 221 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → ∃𝑏 𝑏𝐵)
29 0red 10637 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ∈ ℝ)
30 f1of 6594 . . . . . . . . . . . . . . . 16 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
3111, 30syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷⟶(0[,)+∞))
328axcontlem4 26765 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3332, 5sseldd 3919 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐷)
3431, 33ffvelrnd 6833 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (0[,)+∞))
3516, 34sseldi 3916 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ ℝ)
3635ad2antrr 725 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ ℝ)
37 simprl 770 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 𝑘 ∈ ℝ)
38 elrege0 12836 . . . . . . . . . . . . . . 15 ((𝐹𝑈) ∈ (0[,)+∞) ↔ ((𝐹𝑈) ∈ ℝ ∧ 0 ≤ (𝐹𝑈)))
3938simprbi 500 . . . . . . . . . . . . . 14 ((𝐹𝑈) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑈))
4034, 39syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 0 ≤ (𝐹𝑈))
4140ad2antrr 725 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ (𝐹𝑈))
42 f1of1 6593 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷1-1→(0[,)+∞))
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1→(0[,)+∞))
44 f1elima 7003 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑈𝐷𝐴𝐷) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
4543, 33, 32, 44syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
465, 45mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (𝐹𝐴))
4746adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ (𝐹𝐴))
48 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐵)
4943adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐹:𝐷1-1→(0[,)+∞))
50 simpl1 1188 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍 ∈ (𝔼‘𝑁))
51 simpl2 1189 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑈𝐴)
52 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍𝑈)
5350, 51, 523jca 1125 . . . . . . . . . . . . . . . . . . . . 21 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈))
548axcontlem3 26764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
5553, 54sylan2 595 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
5655sselda 3918 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐷)
5755adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐵𝐷)
58 f1elima 7003 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑏𝐷𝐵𝐷) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
5949, 56, 57, 58syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
6048, 59mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ (𝐹𝐵))
6160adantrl 715 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ (𝐹𝐵))
6247, 61jca 515 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)))
63 breq1 5036 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐹𝑈) → (𝑚𝑘 ↔ (𝐹𝑈) ≤ 𝑘))
6463anbi1d 632 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑈) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘𝑛)))
65 breq2 5037 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐹𝑏) → (𝑘𝑛𝑘 ≤ (𝐹𝑏)))
6665anbi2d 631 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑏) → (((𝐹𝑈) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏))))
6764, 66rspc2va 3585 . . . . . . . . . . . . . . 15 ((((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6862, 67sylan 583 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6968an32s 651 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
7069simpld 498 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ≤ 𝑘)
7129, 36, 37, 41, 70letrd 10790 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ 𝑘)
7271expr 460 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (𝑏𝐵 → 0 ≤ 𝑘))
7372exlimdv 1934 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (∃𝑏 𝑏𝐵 → 0 ≤ 𝑘))
7428, 73mpd 15 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 0 ≤ 𝑘)
75 elrege0 12836 . . . . . . . 8 (𝑘 ∈ (0[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
7624, 74, 75sylanbrc 586 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ (0[,)+∞))
7776ex 416 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → 𝑘 ∈ (0[,)+∞)))
788ssrab3 4011 . . . . . . . . 9 𝐷 ⊆ (𝔼‘𝑁)
79 simpr 488 . . . . . . . . . 10 ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) → 𝑘 ∈ (0[,)+∞))
80 f1ocnvdm 7023 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹𝑘) ∈ 𝐷)
8111, 79, 80syl2an 598 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ 𝐷)
8278, 81sseldi 3916 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ (𝔼‘𝑁))
832, 3, 63jca 1125 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
8483, 7jca 515 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8584adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8632sselda 3918 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑞𝐴) → 𝑞𝐷)
8786adantrr 716 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑞𝐷)
8887adantrl 715 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑞𝐷)
89 simplr 768 . . . . . . . . . . . . . . 15 (((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑘 ∈ (0[,)+∞))
9011, 89, 80syl2an 598 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) ∈ 𝐷)
9155sselda 3918 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑟𝐵) → 𝑟𝐷)
9291adantrl 715 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑟𝐷)
9392adantrl 715 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑟𝐷)
9488, 90, 933jca 1125 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷))
9585, 94jca 515 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)))
96 f1ofun 6596 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
9711, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → Fun 𝐹)
98 fdm 6499 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷⟶(0[,)+∞) → dom 𝐹 = 𝐷)
9911, 30, 983syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → dom 𝐹 = 𝐷)
10032, 99sseqtrrd 3959 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ dom 𝐹)
101 funfvima2 6975 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10297, 100, 101syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10355, 99sseqtrrd 3959 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ⊆ dom 𝐹)
104 funfvima2 6975 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
10597, 103, 104syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
106102, 105anim12d 611 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑞𝐴𝑟𝐵) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵))))
107106imp 410 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
108107adantrl 715 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
109 simprll 778 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
110 breq1 5036 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑞) → (𝑚𝑘 ↔ (𝐹𝑞) ≤ 𝑘))
111110anbi1d 632 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑞) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘𝑛)))
112 breq2 5037 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑟) → (𝑘𝑛𝑘 ≤ (𝐹𝑟)))
113112anbi2d 631 . . . . . . . . . . . . . . 15 (𝑛 = (𝐹𝑟) → (((𝐹𝑞) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
114111, 113rspc2v 3584 . . . . . . . . . . . . . 14 (((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
115108, 109, 114sylc 65 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟)))
116 f1ocnvfv2 7016 . . . . . . . . . . . . . . . 16 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹‘(𝐹𝑘)) = 𝑘)
11711, 89, 116syl2an 598 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹‘(𝐹𝑘)) = 𝑘)
118117breq2d 5045 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ↔ (𝐹𝑞) ≤ 𝑘))
119117breq1d 5043 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟) ↔ 𝑘 ≤ (𝐹𝑟)))
120118, 119anbi12d 633 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
121115, 120mpbird 260 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)))
1228, 9axcontlem8 26769 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩))
12395, 121, 122sylc 65 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
124123anassrs 471 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) ∧ (𝑞𝐴𝑟𝐵)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
125124ralrimivva 3159 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
126 opeq1 4766 . . . . . . . . . . 11 (𝑞 = 𝑥 → ⟨𝑞, 𝑟⟩ = ⟨𝑥, 𝑟⟩)
127126breq2d 5045 . . . . . . . . . 10 (𝑞 = 𝑥 → ((𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩))
128 opeq2 4768 . . . . . . . . . . 11 (𝑟 = 𝑦 → ⟨𝑥, 𝑟⟩ = ⟨𝑥, 𝑦⟩)
129128breq2d 5045 . . . . . . . . . 10 (𝑟 = 𝑦 → ((𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
130127, 129cbvral2vw 3411 . . . . . . . . 9 (∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
131125, 130sylib 221 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
132 breq1 5036 . . . . . . . . . 10 (𝑏 = (𝐹𝑘) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
1331322ralbidv 3167 . . . . . . . . 9 (𝑏 = (𝐹𝑘) → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
134133rspcev 3574 . . . . . . . 8 (((𝐹𝑘) ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
13582, 131, 134syl2anc 587 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
136135expr 460 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ (0[,)+∞) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
13777, 136syld 47 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
138137ex 416 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
139138com23 86 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑘 ∈ ℝ → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
140139rexlimdv 3245 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
14123, 140mpd 15 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  wss 3884  c0 4246  cop 4534   class class class wbr 5033  {copab 5095  ccnv 5522  dom cdm 5523  ran crn 5524  cima 5526  Fun wfun 6322  wf 6324  1-1wf1 6325  ontowfo 6326  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  +∞cpnf 10665  cle 10669  cmin 10863  cn 11629  [,)cico 12732  ...cfz 12889  𝔼cee 26686   Btwn cbtwn 26687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-z 11974  df-uz 12236  df-ico 12736  df-icc 12737  df-fz 12890  df-ee 26689  df-btwn 26690
This theorem is referenced by:  axcontlem11  26772
  Copyright terms: Public domain W3C validator