| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . 5
⊢ (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡)) | 
| 2 |  | fveq1 6904 | . . . . 5
⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | 
| 3 | 1, 2 | eqeq12d 2752 | . . . 4
⊢ (𝑤 = 𝑡 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑡) = (𝑡‘0))) | 
| 4 |  | clwwlkf1o.d | . . . 4
⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} | 
| 5 | 3, 4 | elrab2 3694 | . . 3
⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) | 
| 6 |  | nnnn0 12535 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) | 
| 7 |  | iswwlksn 29859 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)))) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)))) | 
| 9 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 10 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Edg‘𝐺) =
(Edg‘𝐺) | 
| 11 | 9, 10 | iswwlks 29857 | . . . . . . . . 9
⊢ (𝑡 ∈ (WWalks‘𝐺) ↔ (𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 12 | 11 | a1i 11 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑡 ∈ (WWalks‘𝐺) ↔ (𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 13 | 12 | anbi1d 631 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ↔ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)))) | 
| 14 | 8, 13 | bitrd 279 | . . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)))) | 
| 15 |  | simpll 766 | . . . . . . . . . . . . . 14
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑡 ∈ Word (Vtx‘𝐺)) | 
| 16 |  | peano2nn0 12568 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) | 
| 17 | 6, 16 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ0) | 
| 18 |  | nnre 12274 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) | 
| 19 | 18 | lep1d 12200 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1)) | 
| 20 |  | elfz2nn0 13659 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0
∧ 𝑁 ≤ (𝑁 + 1))) | 
| 21 | 6, 17, 19, 20 | syl3anbrc 1343 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1))) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (0...(𝑁 + 1))) | 
| 23 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑡) =
(𝑁 + 1) →
(0...(♯‘𝑡)) =
(0...(𝑁 +
1))) | 
| 24 | 23 | eleq2d 2826 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑡) =
(𝑁 + 1) → (𝑁 ∈
(0...(♯‘𝑡))
↔ 𝑁 ∈ (0...(𝑁 + 1)))) | 
| 25 | 24 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1)))) | 
| 26 | 25 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1)))) | 
| 27 | 22, 26 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (0...(♯‘𝑡))) | 
| 28 | 15, 27 | jca 511 | . . . . . . . . . . . . 13
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)))) | 
| 29 |  | pfxlen 14722 | . . . . . . . . . . . . 13
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) →
(♯‘(𝑡 prefix
𝑁)) = 𝑁) | 
| 31 | 30 | ex 412 | . . . . . . . . . . 11
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (♯‘(𝑡 prefix 𝑁)) = 𝑁)) | 
| 32 | 31 | 3ad2antl2 1186 | . . . . . . . . . 10
⊢ (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (♯‘(𝑡 prefix 𝑁)) = 𝑁)) | 
| 33 | 32 | impcom 407 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁) | 
| 34 | 33 | adantr 480 | . . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (♯‘(𝑡 prefix 𝑁)) = 𝑁) | 
| 35 |  | pfxcl 14716 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ Word (Vtx‘𝐺) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺)) | 
| 36 | 35 | 3ad2ant2 1134 | . . . . . . . . . . . 12
⊢ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺)) | 
| 37 | 36 | ad2antrl 728 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺)) | 
| 38 | 37 | ad2antrl 728 | . . . . . . . . . 10
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺)) | 
| 39 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑡) =
(𝑁 + 1) →
((♯‘𝑡) −
1) = ((𝑁 + 1) −
1)) | 
| 40 | 39 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑡) =
(𝑁 + 1) →
(0..^((♯‘𝑡)
− 1)) = (0..^((𝑁 + 1)
− 1))) | 
| 41 |  | nncn 12275 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) | 
| 42 |  | 1cnd 11257 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) | 
| 43 | 41, 42 | pncand 11622 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁) | 
| 44 | 43 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 + 1) − 1)) =
(0..^𝑁)) | 
| 45 | 40, 44 | sylan9eqr 2798 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) →
(0..^((♯‘𝑡)
− 1)) = (0..^𝑁)) | 
| 46 | 45 | raleqdv 3325 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 47 |  | nnz 12636 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 48 |  | peano2zm 12662 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 49 | 47, 48 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℤ) | 
| 50 | 18 | lem1d 12202 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ≤ 𝑁) | 
| 51 |  | eluz2 12885 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)) | 
| 52 | 49, 47, 50, 51 | syl3anbrc 1343 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘(𝑁 − 1))) | 
| 53 |  | fzoss2 13728 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | 
| 54 | 52, 53 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ →
(0..^(𝑁 − 1)) ⊆
(0..^𝑁)) | 
| 55 | 54 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | 
| 56 |  | ssralv 4051 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((0..^(𝑁 − 1))
⊆ (0..^𝑁) →
(∀𝑖 ∈
(0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 57 | 55, 56 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 58 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑡 ∈ Word (Vtx‘𝐺)) | 
| 59 | 21 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → 𝑁 ∈ (0...(𝑁 + 1))) | 
| 60 | 24 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1)))) | 
| 61 | 59, 60 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → 𝑁 ∈ (0...(♯‘𝑡))) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...(♯‘𝑡))) | 
| 63 | 54 | sseld 3981 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ ℕ → (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ (0..^𝑁))) | 
| 64 | 63 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ (0..^𝑁))) | 
| 65 | 64 | imp 406 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) | 
| 66 |  | pfxfv 14721 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑡 prefix 𝑁)‘𝑖) = (𝑡‘𝑖)) | 
| 67 | 66 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑡‘𝑖) = ((𝑡 prefix 𝑁)‘𝑖)) | 
| 68 | 58, 62, 65, 67 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑡‘𝑖) = ((𝑡 prefix 𝑁)‘𝑖)) | 
| 69 | 47 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℤ) | 
| 70 |  | elfzom1elp1fzo 13772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) | 
| 71 | 69, 70 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) | 
| 72 |  | pfxfv 14721 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → ((𝑡 prefix 𝑁)‘(𝑖 + 1)) = (𝑡‘(𝑖 + 1))) | 
| 73 | 72 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → (𝑡‘(𝑖 + 1)) = ((𝑡 prefix 𝑁)‘(𝑖 + 1))) | 
| 74 | 58, 62, 71, 73 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑡‘(𝑖 + 1)) = ((𝑡 prefix 𝑁)‘(𝑖 + 1))) | 
| 75 | 68, 74 | preq12d 4740 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} = {((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))}) | 
| 76 | 75 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 77 | 76 | ralbidva 3175 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 78 | 77 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 79 | 78 | ex 412 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (𝑡 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 80 | 79 | com23 86 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 81 | 57, 80 | syld 47 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 82 | 46, 81 | sylbid 240 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧
(♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 83 | 82 | ex 412 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ →
((♯‘𝑡) = (𝑁 + 1) → (∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) | 
| 84 | 83 | com23 86 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) | 
| 85 | 84 | com14 96 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) | 
| 86 | 85 | imp 406 | . . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 87 | 86 | 3adant1 1130 | . . . . . . . . . . . . . 14
⊢ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) | 
| 88 | 87 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 89 | 88 | impcom 407 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) | 
| 90 | 89 | ad2antrl 728 | . . . . . . . . . . 11
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) | 
| 91 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢
((♯‘(𝑡
prefix 𝑁)) = 𝑁 → ((♯‘(𝑡 prefix 𝑁)) − 1) = (𝑁 − 1)) | 
| 92 | 91 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢
((♯‘(𝑡
prefix 𝑁)) = 𝑁 →
(0..^((♯‘(𝑡
prefix 𝑁)) − 1)) =
(0..^(𝑁 −
1))) | 
| 93 | 92 | adantr 480 | . . . . . . . . . . . 12
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) →
(0..^((♯‘(𝑡
prefix 𝑁)) − 1)) =
(0..^(𝑁 −
1))) | 
| 94 | 93 | raleqdv 3325 | . . . . . . . . . . 11
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (∀𝑖 ∈
(0..^((♯‘(𝑡
prefix 𝑁)) −
1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 95 | 90, 94 | mpbird 257 | . . . . . . . . . 10
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) | 
| 96 |  | simprl2 1219 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑡 ∈ Word (Vtx‘𝐺)) | 
| 97 | 19 | ancli 548 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1))) | 
| 98 | 47 | peano2zd 12727 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℤ) | 
| 99 |  | fznn 13633 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 + 1) ∈ ℤ →
(𝑁 ∈ (1...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1)))) | 
| 100 | 98, 99 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ (1...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1)))) | 
| 101 | 97, 100 | mpbird 257 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1))) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑁 ∈ (1...(𝑁 + 1))) | 
| 103 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑡) =
(𝑁 + 1) →
(1...(♯‘𝑡)) =
(1...(𝑁 +
1))) | 
| 104 | 103 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑡) =
(𝑁 + 1) → (𝑁 ∈
(1...(♯‘𝑡))
↔ 𝑁 ∈ (1...(𝑁 + 1)))) | 
| 105 | 104 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑡)) ↔ 𝑁 ∈ (1...(𝑁 + 1)))) | 
| 106 | 105 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑁 ∈ (1...(♯‘𝑡)) ↔ 𝑁 ∈ (1...(𝑁 + 1)))) | 
| 107 | 102, 106 | mpbird 257 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑁 ∈ (1...(♯‘𝑡))) | 
| 108 | 96, 107 | jca 511 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡)))) | 
| 109 | 108 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡)))) | 
| 110 |  | pfxfvlsw 14734 | . . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))) → (lastS‘(𝑡 prefix 𝑁)) = (𝑡‘(𝑁 − 1))) | 
| 111 | 109, 110 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (lastS‘(𝑡 prefix 𝑁)) = (𝑡‘(𝑁 − 1))) | 
| 112 |  | pfxfv0 14731 | . . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0)) | 
| 113 | 108, 112 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0)) | 
| 114 | 113 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0)) | 
| 115 | 111, 114 | preq12d 4740 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} = {(𝑡‘(𝑁 − 1)), (𝑡‘0)}) | 
| 116 |  | eqcom 2743 | . . . . . . . . . . . . . . . . 17
⊢
((lastS‘𝑡) =
(𝑡‘0) ↔ (𝑡‘0) = (lastS‘𝑡)) | 
| 117 | 116 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢
((lastS‘𝑡) =
(𝑡‘0) → (𝑡‘0) = (lastS‘𝑡)) | 
| 118 | 117 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘0) = (lastS‘𝑡)) | 
| 119 |  | lsw 14603 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ Word (Vtx‘𝐺) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1))) | 
| 120 | 119 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1))) | 
| 121 | 120 | ad2antrl 728 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1))) | 
| 122 | 121 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1))) | 
| 123 | 39 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → ((♯‘𝑡) − 1) = ((𝑁 + 1) −
1)) | 
| 124 | 123, 43 | sylan9eqr 2798 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ((♯‘𝑡) − 1) = 𝑁) | 
| 125 | 124 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → ((♯‘𝑡) − 1) = 𝑁) | 
| 126 | 125 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡‘𝑁)) | 
| 127 | 118, 122,
126 | 3eqtrd 2780 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘0) = (𝑡‘𝑁)) | 
| 128 | 127 | preq2d 4739 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡‘0)} = {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)}) | 
| 129 | 39, 43 | sylan9eq 2796 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑡)
= (𝑁 + 1) ∧ 𝑁 ∈ ℕ) →
((♯‘𝑡) −
1) = 𝑁) | 
| 130 | 129 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑡)
= (𝑁 + 1) ∧ 𝑁 ∈ ℕ) →
(0..^((♯‘𝑡)
− 1)) = (0..^𝑁)) | 
| 131 | 130 | raleqdv 3325 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑡)
= (𝑁 + 1) ∧ 𝑁 ∈ ℕ) →
(∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))) | 
| 132 |  | fzo0end 13798 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) | 
| 133 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = (𝑁 − 1) → (𝑡‘𝑖) = (𝑡‘(𝑁 − 1))) | 
| 134 |  | fvoveq1 7455 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = (𝑁 − 1) → (𝑡‘(𝑖 + 1)) = (𝑡‘((𝑁 − 1) + 1))) | 
| 135 | 133, 134 | preq12d 4740 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = (𝑁 − 1) → {(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} = {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))}) | 
| 136 | 135 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = (𝑁 − 1) → ({(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))) | 
| 137 | 136 | rspcva 3619 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 − 1) ∈ (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)) | 
| 138 | 132, 137 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ ∧
∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)) | 
| 139 | 41, 42 | npcand 11625 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) | 
| 140 | 139 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → (𝑡‘((𝑁 − 1) + 1)) = (𝑡‘𝑁)) | 
| 141 | 140 | preq2d 4739 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} = {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)}) | 
| 142 | 141 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) ↔ {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 143 | 142 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 144 | 143 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ ∧
∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 145 | 138, 144 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ ∧
∀𝑖 ∈ (0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)) | 
| 146 | 145 | ex 412 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 147 | 146 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑡)
= (𝑁 + 1) ∧ 𝑁 ∈ ℕ) →
(∀𝑖 ∈
(0..^𝑁){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 148 | 131, 147 | sylbid 240 | . . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑡)
= (𝑁 + 1) ∧ 𝑁 ∈ ℕ) →
(∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 149 | 148 | ex 412 | . . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑡) =
(𝑁 + 1) → (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)))) | 
| 150 | 149 | com3r 87 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)))) | 
| 151 | 150 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . 16
⊢ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)))) | 
| 152 | 151 | imp 406 | . . . . . . . . . . . . . . 15
⊢ (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺))) | 
| 153 | 152 | impcom 407 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)) | 
| 154 | 153 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡‘𝑁)} ∈ (Edg‘𝐺)) | 
| 155 | 128, 154 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡‘0)} ∈ (Edg‘𝐺)) | 
| 156 | 115, 155 | eqeltrd 2840 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) | 
| 157 | 156 | adantl 481 | . . . . . . . . . 10
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) | 
| 158 | 38, 95, 157 | 3jca 1128 | . . . . . . . . 9
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺))) | 
| 159 |  | simpl 482 | . . . . . . . . 9
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁) | 
| 160 | 158, 159 | jca 511 | . . . . . . . 8
⊢
(((♯‘(𝑡
prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)) | 
| 161 | 34, 160 | mpancom 688 | . . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)) | 
| 162 | 161 | exp31 419 | . . . . . 6
⊢ (𝑁 ∈ ℕ → (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑡)
− 1)){(𝑡‘𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → ((lastS‘𝑡) = (𝑡‘0) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)))) | 
| 163 | 14, 162 | sylbid 240 | . . . . 5
⊢ (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑡) = (𝑡‘0) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)))) | 
| 164 | 163 | imp32 418 | . . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)) | 
| 165 | 9, 10 | isclwwlknx 30056 | . . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))) | 
| 166 | 165 | adantr 480 | . . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → ((𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))) | 
| 167 | 164, 166 | mpbird 257 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → (𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺)) | 
| 168 | 5, 167 | sylan2b 594 | . 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 ∈ 𝐷) → (𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺)) | 
| 169 |  | clwwlkf1o.f | . 2
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) | 
| 170 | 168, 169 | fmptd 7133 | 1
⊢ (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺)) |