MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkf Structured version   Visualization version   GIF version

Theorem clwwlkf 27569
Description: Lemma 1 for clwwlkf1o 27573: F is a function. (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkf (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6499 . . . . 5 (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡))
2 fveq1 6498 . . . . 5 (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0))
31, 2eqeq12d 2793 . . . 4 (𝑤 = 𝑡 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑡) = (𝑡‘0)))
4 clwwlkf1o.d . . . 4 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
53, 4elrab2 3599 . . 3 (𝑡𝐷 ↔ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0)))
6 nnnn0 11715 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 iswwlksn 27324 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1))))
86, 7syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1))))
9 eqid 2778 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2778 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
119, 10iswwlks 27322 . . . . . . . . 9 (𝑡 ∈ (WWalks‘𝐺) ↔ (𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1211a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑡 ∈ (WWalks‘𝐺) ↔ (𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1312anbi1d 620 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑡 ∈ (WWalks‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ↔ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))))
148, 13bitrd 271 . . . . . 6 (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))))
15 simpll 754 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑡 ∈ Word (Vtx‘𝐺))
16 peano2nn0 11749 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
176, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
18 nnre 11447 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918lep1d 11372 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
20 elfz2nn0 12814 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
216, 17, 19, 20syl3anbrc 1323 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
2221adantl 474 . . . . . . . . . . . . . . 15 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (0...(𝑁 + 1)))
23 oveq2 6984 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑡) = (𝑁 + 1) → (0...(♯‘𝑡)) = (0...(𝑁 + 1)))
2423eleq2d 2851 . . . . . . . . . . . . . . . . 17 ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1))))
2524adantl 474 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1))))
2625adantr 473 . . . . . . . . . . . . . . 15 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1))))
2722, 26mpbird 249 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (0...(♯‘𝑡)))
2815, 27jca 504 . . . . . . . . . . . . 13 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡))))
29 pfxlen 13865 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘(𝑡 prefix 𝑁)) = 𝑁)
3130ex 405 . . . . . . . . . . 11 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (♯‘(𝑡 prefix 𝑁)) = 𝑁))
32313ad2antl2 1166 . . . . . . . . . 10 (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (♯‘(𝑡 prefix 𝑁)) = 𝑁))
3332impcom 399 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁)
3433adantr 473 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (♯‘(𝑡 prefix 𝑁)) = 𝑁)
35 pfxcl 13859 . . . . . . . . . . . . 13 (𝑡 ∈ Word (Vtx‘𝐺) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺))
36353ad2ant2 1114 . . . . . . . . . . . 12 ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺))
3736ad2antrl 715 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺))
3837ad2antrl 715 . . . . . . . . . 10 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺))
39 oveq1 6983 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑡) = (𝑁 + 1) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
4039oveq2d 6992 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑡) = (𝑁 + 1) → (0..^((♯‘𝑡) − 1)) = (0..^((𝑁 + 1) − 1)))
41 nncn 11448 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
42 1cnd 10434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 1 ∈ ℂ)
4341, 42pncand 10799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4443oveq2d 6992 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
4540, 44sylan9eqr 2836 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (0..^((♯‘𝑡) − 1)) = (0..^𝑁))
4645raleqdv 3355 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 nnz 11817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48 peano2zm 11838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
5018lem1d 11374 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ≤ 𝑁)
51 eluz2 12064 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))
5249, 47, 50, 51syl3anbrc 1323 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
53 fzoss2 12880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
5554adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
56 ssralv 3923 . . . . . . . . . . . . . . . . . . . . . 22 ((0..^(𝑁 − 1)) ⊆ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
58 simplr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑡 ∈ Word (Vtx‘𝐺))
5921adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → 𝑁 ∈ (0...(𝑁 + 1)))
6024adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (0...(♯‘𝑡)) ↔ 𝑁 ∈ (0...(𝑁 + 1))))
6159, 60mpbird 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → 𝑁 ∈ (0...(♯‘𝑡)))
6261ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...(♯‘𝑡)))
6354sseld 3857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ (0..^𝑁)))
6463ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ (0..^𝑁)))
6564imp 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
66 pfxfv 13864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑡 prefix 𝑁)‘𝑖) = (𝑡𝑖))
6766eqcomd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑡𝑖) = ((𝑡 prefix 𝑁)‘𝑖))
6858, 62, 65, 67syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑡𝑖) = ((𝑡 prefix 𝑁)‘𝑖))
6947ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℤ)
70 elfzom1elp1fzo 12919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
7169, 70sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
72 pfxfv 13864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → ((𝑡 prefix 𝑁)‘(𝑖 + 1)) = (𝑡‘(𝑖 + 1)))
7372eqcomd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑡)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → (𝑡‘(𝑖 + 1)) = ((𝑡 prefix 𝑁)‘(𝑖 + 1)))
7458, 62, 71, 73syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑡‘(𝑖 + 1)) = ((𝑡 prefix 𝑁)‘(𝑖 + 1)))
7568, 74preq12d 4551 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {(𝑡𝑖), (𝑡‘(𝑖 + 1))} = {((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))})
7675eleq1d 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7776ralbidva 3146 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7877biimpd 221 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) ∧ 𝑡 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7978ex 405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑡 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8079com23 86 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8157, 80syld 47 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8246, 81sylbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (♯‘𝑡) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8382ex 405 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → ((♯‘𝑡) = (𝑁 + 1) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
8483com23 86 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑡 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
8584com14 96 . . . . . . . . . . . . . . . 16 (𝑡 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
8685imp 398 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
87863adant1 1110 . . . . . . . . . . . . . 14 ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8887imp 398 . . . . . . . . . . . . 13 (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8988impcom 399 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9089ad2antrl 715 . . . . . . . . . . 11 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
91 oveq1 6983 . . . . . . . . . . . . . 14 ((♯‘(𝑡 prefix 𝑁)) = 𝑁 → ((♯‘(𝑡 prefix 𝑁)) − 1) = (𝑁 − 1))
9291oveq2d 6992 . . . . . . . . . . . . 13 ((♯‘(𝑡 prefix 𝑁)) = 𝑁 → (0..^((♯‘(𝑡 prefix 𝑁)) − 1)) = (0..^(𝑁 − 1)))
9392adantr 473 . . . . . . . . . . . 12 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (0..^((♯‘(𝑡 prefix 𝑁)) − 1)) = (0..^(𝑁 − 1)))
9493raleqdv 3355 . . . . . . . . . . 11 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9590, 94mpbird 249 . . . . . . . . . 10 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
96 simprl2 1199 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑡 ∈ Word (Vtx‘𝐺))
9719ancli 541 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1)))
9847peano2zd 11903 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
99 fznn 12791 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ ℤ → (𝑁 ∈ (1...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1))))
10098, 99syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 ∈ (1...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ (𝑁 + 1))))
10197, 100mpbird 249 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
102101adantr 473 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑁 ∈ (1...(𝑁 + 1)))
103 oveq2 6984 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑡) = (𝑁 + 1) → (1...(♯‘𝑡)) = (1...(𝑁 + 1)))
104103eleq2d 2851 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑡)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
105104adantl 474 . . . . . . . . . . . . . . . . . 18 (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑡)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
106105adantl 474 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑁 ∈ (1...(♯‘𝑡)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
107102, 106mpbird 249 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → 𝑁 ∈ (1...(♯‘𝑡)))
10896, 107jca 504 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))))
109108adantr 473 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))))
110 pfxfvlsw 13877 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))) → (lastS‘(𝑡 prefix 𝑁)) = (𝑡‘(𝑁 − 1)))
111109, 110syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (lastS‘(𝑡 prefix 𝑁)) = (𝑡‘(𝑁 − 1)))
112 pfxfv0 13874 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑡))) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0))
113108, 112syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0))
114113adantr 473 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → ((𝑡 prefix 𝑁)‘0) = (𝑡‘0))
115111, 114preq12d 4551 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} = {(𝑡‘(𝑁 − 1)), (𝑡‘0)})
116 eqcom 2785 . . . . . . . . . . . . . . . . 17 ((lastS‘𝑡) = (𝑡‘0) ↔ (𝑡‘0) = (lastS‘𝑡))
117116biimpi 208 . . . . . . . . . . . . . . . 16 ((lastS‘𝑡) = (𝑡‘0) → (𝑡‘0) = (lastS‘𝑡))
118117adantl 474 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘0) = (lastS‘𝑡))
119 lsw 13727 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ Word (Vtx‘𝐺) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1)))
1201193ad2ant2 1114 . . . . . . . . . . . . . . . . 17 ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1)))
121120ad2antrl 715 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1)))
122121adantr 473 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (lastS‘𝑡) = (𝑡‘((♯‘𝑡) − 1)))
12339adantl 474 . . . . . . . . . . . . . . . . . 18 (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
124123, 43sylan9eqr 2836 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → ((♯‘𝑡) − 1) = 𝑁)
125124adantr 473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → ((♯‘𝑡) − 1) = 𝑁)
126125fveq2d 6503 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡𝑁))
127118, 122, 1263eqtrd 2818 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (𝑡‘0) = (𝑡𝑁))
128127preq2d 4550 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡‘0)} = {(𝑡‘(𝑁 − 1)), (𝑡𝑁)})
12939, 43sylan9eq 2834 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑡) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((♯‘𝑡) − 1) = 𝑁)
130129oveq2d 6992 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑡) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (0..^((♯‘𝑡) − 1)) = (0..^𝑁))
131130raleqdv 3355 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑡) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
132 fzo0end 12944 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
133 fveq2 6499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = (𝑁 − 1) → (𝑡𝑖) = (𝑡‘(𝑁 − 1)))
134 fvoveq1 6999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = (𝑁 − 1) → (𝑡‘(𝑖 + 1)) = (𝑡‘((𝑁 − 1) + 1)))
135133, 134preq12d 4551 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = (𝑁 − 1) → {(𝑡𝑖), (𝑡‘(𝑖 + 1))} = {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))})
136135eleq1d 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = (𝑁 − 1) → ({(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
137136rspcva 3533 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 − 1) ∈ (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
138132, 137sylan 572 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
13941, 42npcand 10802 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
140139fveq2d 6503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (𝑡‘((𝑁 − 1) + 1)) = (𝑡𝑁))
141140preq2d 4550 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} = {(𝑡‘(𝑁 − 1)), (𝑡𝑁)})
142141eleq1d 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) ↔ {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
143142biimpd 221 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
144143adantr 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ({(𝑡‘(𝑁 − 1)), (𝑡‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
145138, 144mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))
146145ex 405 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
147146adantl 474 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑡) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^𝑁){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
148131, 147sylbid 232 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑡) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
149148ex 405 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))))
150149com3r 87 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))))
1511503ad2ant3 1115 . . . . . . . . . . . . . . . 16 ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑡) = (𝑁 + 1) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))))
152151imp 398 . . . . . . . . . . . . . . 15 (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → (𝑁 ∈ ℕ → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺)))
153152impcom 399 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))
154153adantr 473 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡𝑁)} ∈ (Edg‘𝐺))
155128, 154eqeltrd 2866 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(𝑡‘(𝑁 − 1)), (𝑡‘0)} ∈ (Edg‘𝐺))
156115, 155eqeltrd 2866 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺))
157156adantl 474 . . . . . . . . . 10 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺))
15838, 95, 1573jca 1108 . . . . . . . . 9 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → ((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)))
159 simpl 475 . . . . . . . . 9 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (♯‘(𝑡 prefix 𝑁)) = 𝑁)
160158, 159jca 504 . . . . . . . 8 (((♯‘(𝑡 prefix 𝑁)) = 𝑁 ∧ ((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0))) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))
16134, 160mpancom 675 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1))) ∧ (lastS‘𝑡) = (𝑡‘0)) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))
162161exp31 412 . . . . . 6 (𝑁 ∈ ℕ → (((𝑡 ≠ ∅ ∧ 𝑡 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑡) − 1)){(𝑡𝑖), (𝑡‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑡) = (𝑁 + 1)) → ((lastS‘𝑡) = (𝑡‘0) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))))
16314, 162sylbid 232 . . . . 5 (𝑁 ∈ ℕ → (𝑡 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑡) = (𝑡‘0) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))))
164163imp32 411 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁))
1659, 10isclwwlknx 27551 . . . . 5 (𝑁 ∈ ℕ → ((𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)))
166165adantr 473 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → ((𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑡 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑡 prefix 𝑁)) − 1)){((𝑡 prefix 𝑁)‘𝑖), ((𝑡 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑡 prefix 𝑁)), ((𝑡 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑡 prefix 𝑁)) = 𝑁)))
167164, 166mpbird 249 . . 3 ((𝑁 ∈ ℕ ∧ (𝑡 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑡) = (𝑡‘0))) → (𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
1685, 167sylan2b 584 . 2 ((𝑁 ∈ ℕ ∧ 𝑡𝐷) → (𝑡 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
169 clwwlkf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
170168, 169fmptd 6701 1 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  {crab 3092  wss 3829  c0 4178  {cpr 4443   class class class wbr 4929  cmpt 5008  wf 6184  cfv 6188  (class class class)co 6976  0cc0 10335  1c1 10336   + caddc 10338  cle 10475  cmin 10670  cn 11439  0cn0 11707  cz 11793  cuz 12058  ...cfz 12708  ..^cfzo 12849  chash 13505  Word cword 13672  lastSclsw 13725   prefix cpfx 13852  Vtxcvtx 26484  Edgcedg 26535  WWalkscwwlks 27311   WWalksN cwwlksn 27312   ClWWalksN cclwwlkn 27539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-fzo 12850  df-hash 13506  df-word 13673  df-lsw 13726  df-substr 13804  df-pfx 13853  df-wwlks 27316  df-wwlksn 27317  df-clwwlk 27488  df-clwwlkn 27540
This theorem is referenced by:  clwwlkf1  27571  clwwlkfo  27572
  Copyright terms: Public domain W3C validator