MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem6 Structured version   Visualization version   GIF version

Theorem ax5seglem6 28967
Description: Lemma for ax5seg 28971. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
ax5seglem6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑇 = 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖   𝑖,𝐸   𝑖,𝐹   𝑖,𝑁   𝑆,𝑖   𝑇,𝑖

Proof of Theorem ax5seglem6
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simp22l 1292 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑇 ∈ (0[,]1))
2 elicc01 13526 . . . . 5 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
32simp1bi 1145 . . . 4 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
4 resqcl 14174 . . . . 5 (𝑇 ∈ ℝ → (𝑇↑2) ∈ ℝ)
54recnd 11318 . . . 4 (𝑇 ∈ ℝ → (𝑇↑2) ∈ ℂ)
61, 3, 53syl 18 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑇↑2) ∈ ℂ)
7 simp22r 1293 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑆 ∈ (0[,]1))
8 elicc01 13526 . . . . 5 (𝑆 ∈ (0[,]1) ↔ (𝑆 ∈ ℝ ∧ 0 ≤ 𝑆𝑆 ≤ 1))
98simp1bi 1145 . . . 4 (𝑆 ∈ (0[,]1) → 𝑆 ∈ ℝ)
10 resqcl 14174 . . . . 5 (𝑆 ∈ ℝ → (𝑆↑2) ∈ ℝ)
1110recnd 11318 . . . 4 (𝑆 ∈ ℝ → (𝑆↑2) ∈ ℂ)
127, 9, 113syl 18 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑆↑2) ∈ ℂ)
13 fzfid 14024 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (1...𝑁) ∈ Fin)
14 simprl1 1218 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
15143ad2ant1 1133 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝐴 ∈ (𝔼‘𝑁))
16 fveecn 28935 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
1715, 16sylan 579 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
18 simprl3 1220 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁))
19183ad2ant1 1133 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝐶 ∈ (𝔼‘𝑁))
20 fveecn 28935 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
2119, 20sylan 579 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
2217, 21subcld 11647 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
2322sqcld 14194 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
2413, 23fsumcl 15781 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
25 simp1l 1197 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑁 ∈ ℕ)
26 simp1rl 1238 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
27 simp21 1206 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝐴𝐵)
28 simp23l 1294 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))
29 ax5seglem5 28966 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
3025, 26, 27, 1, 28, 29syl23anc 1377 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
31 simp3l 1201 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
32 simprl2 1219 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
33 simprr1 1221 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁))
34 simprr2 1222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐸 ∈ (𝔼‘𝑁))
35 brcgr 28933 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2)))
3614, 32, 33, 34, 35syl22anc 838 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2)))
37363ad2ant1 1133 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2)))
3831, 37mpbid 232 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2))
39 ax5seglem1 28961 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
4025, 15, 19, 1, 28, 39syl122anc 1379 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
41333ad2ant1 1133 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁))
42 simprr3 1223 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → 𝐹 ∈ (𝔼‘𝑁))
43423ad2ant1 1133 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁))
44 simp23r 1295 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))
45 ax5seglem1 28961 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2) = ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2)))
4625, 41, 43, 7, 44, 45syl122anc 1379 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐸𝑗))↑2) = ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2)))
4738, 40, 463eqtr3d 2788 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2)))
48 simp1rr 1239 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))
49 simp22 1207 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)))
50 simp23 1208 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖)))))
51 simp3r 1202 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)
52 ax5seglem3 28964 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2))
5325, 26, 48, 49, 50, 31, 51, 52syl322anc 1398 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2))
5453oveq2d 7464 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2)))
5547, 54eqtr4d 2783 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = ((𝑆↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
566, 12, 24, 30, 55mulcan2ad 11926 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑇↑2) = (𝑆↑2))
572simp2bi 1146 . . . . 5 (𝑇 ∈ (0[,]1) → 0 ≤ 𝑇)
583, 57jca 511 . . . 4 (𝑇 ∈ (0[,]1) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇))
591, 58syl 17 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇))
608simp2bi 1146 . . . . 5 (𝑆 ∈ (0[,]1) → 0 ≤ 𝑆)
619, 60jca 511 . . . 4 (𝑆 ∈ (0[,]1) → (𝑆 ∈ ℝ ∧ 0 ≤ 𝑆))
627, 61syl 17 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → (𝑆 ∈ ℝ ∧ 0 ≤ 𝑆))
63 sq11 14181 . . 3 (((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) ∧ (𝑆 ∈ ℝ ∧ 0 ≤ 𝑆)) → ((𝑇↑2) = (𝑆↑2) ↔ 𝑇 = 𝑆))
6459, 62, 63syl2anc 583 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ((𝑇↑2) = (𝑆↑2) ↔ 𝑇 = 𝑆))
6556, 64mpbid 232 1 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑇 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  cn 12293  2c2 12348  [,]cicc 13410  ...cfz 13567  cexp 14112  Σcsu 15734  𝔼cee 28921  Cgrccgr 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924  df-cgr 28926
This theorem is referenced by:  ax5seg  28971
  Copyright terms: Public domain W3C validator