MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icodiamlt Structured version   Visualization version   GIF version

Theorem icodiamlt 14786
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 10676 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 12789 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
3 elico2 12789 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐷 ∈ (𝐴[,)𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)))
42, 3anbi12d 633 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) ↔ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
54biimpd 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
61, 5sylan2 595 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
7 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℝ)
87recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℂ)
9 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℝ)
109recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℂ)
118, 10negsubdi2d 11002 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) = (𝐴𝐵))
129, 7resubcld 11057 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ∈ ℝ)
13 simprl1 1215 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 ∈ ℝ)
1413, 7resubcld 11057 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) ∈ ℝ)
15 simprr1 1218 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 ∈ ℝ)
1613, 15resubcld 11057 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) ∈ ℝ)
17 simprl2 1216 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐶)
189, 13, 7, 17lesub1dd 11245 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ≤ (𝐶𝐵))
19 simprr3 1220 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 < 𝐵)
2015, 7, 13, 19ltsub2dd 11242 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) < (𝐶𝐷))
2112, 14, 16, 18, 20lelttrd 10787 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) < (𝐶𝐷))
2211, 21eqbrtrd 5064 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) < (𝐶𝐷))
237, 15resubcld 11057 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ∈ ℝ)
247, 9resubcld 11057 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐴) ∈ ℝ)
25 simprl3 1217 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 < 𝐵)
2613, 7, 15, 25ltsub1dd 11241 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐷))
27 simprr2 1219 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐷)
289, 15, 7, 27lesub2dd 11246 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ≤ (𝐵𝐴))
2916, 23, 24, 26, 28ltletrd 10789 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐴))
3016, 24absltd 14780 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → ((abs‘(𝐶𝐷)) < (𝐵𝐴) ↔ (-(𝐵𝐴) < (𝐶𝐷) ∧ (𝐶𝐷) < (𝐵𝐴))))
3122, 29, 30mpbir2and 712 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
3231ex 416 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
336, 32syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
3433imp 410 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2114   class class class wbr 5042  cfv 6334  (class class class)co 7140  cr 10525  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860  [,)cico 12728  abscabs 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586
This theorem is referenced by:  irrapxlem2  39694  hoiqssbllem2  43201
  Copyright terms: Public domain W3C validator