MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icodiamlt Structured version   Visualization version   GIF version

Theorem icodiamlt 15075
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 10952 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 13072 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
3 elico2 13072 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐷 ∈ (𝐴[,)𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)))
42, 3anbi12d 630 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) ↔ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
54biimpd 228 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
61, 5sylan2 592 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))))
7 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℝ)
87recnd 10934 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐵 ∈ ℂ)
9 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℝ)
109recnd 10934 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴 ∈ ℂ)
118, 10negsubdi2d 11278 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) = (𝐴𝐵))
129, 7resubcld 11333 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ∈ ℝ)
13 simprl1 1216 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 ∈ ℝ)
1413, 7resubcld 11333 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) ∈ ℝ)
15 simprr1 1219 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 ∈ ℝ)
1613, 15resubcld 11333 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) ∈ ℝ)
17 simprl2 1217 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐶)
189, 13, 7, 17lesub1dd 11521 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) ≤ (𝐶𝐵))
19 simprr3 1221 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐷 < 𝐵)
2015, 7, 13, 19ltsub2dd 11518 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐵) < (𝐶𝐷))
2112, 14, 16, 18, 20lelttrd 11063 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐴𝐵) < (𝐶𝐷))
2211, 21eqbrtrd 5092 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → -(𝐵𝐴) < (𝐶𝐷))
237, 15resubcld 11333 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ∈ ℝ)
247, 9resubcld 11333 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐴) ∈ ℝ)
25 simprl3 1218 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐶 < 𝐵)
2613, 7, 15, 25ltsub1dd 11517 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐷))
27 simprr2 1220 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → 𝐴𝐷)
289, 15, 7, 27lesub2dd 11522 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐵𝐷) ≤ (𝐵𝐴))
2916, 23, 24, 26, 28ltletrd 11065 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (𝐶𝐷) < (𝐵𝐴))
3016, 24absltd 15069 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → ((abs‘(𝐶𝐷)) < (𝐵𝐴) ↔ (-(𝐵𝐴) < (𝐶𝐷) ∧ (𝐶𝐷) < (𝐵𝐴))))
3122, 29, 30mpbir2and 709 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
3231ex 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) ∧ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷 < 𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
336, 32syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (abs‘(𝐶𝐷)) < (𝐵𝐴)))
3433imp 406 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136  [,)cico 13010  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  irrapxlem2  40561  hoiqssbllem2  44051
  Copyright terms: Public domain W3C validator