Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   GIF version

Theorem erdszelem7 32054
Description: Lemma for erdsze 32059. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem7.r (𝜑𝑅 ∈ ℕ)
erdszelem7.m (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
Assertion
Ref Expression
erdszelem7 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Distinct variable groups:   𝑥,𝑦,𝑠,𝐹   𝐾,𝑠   𝐴,𝑠,𝑥,𝑦   𝑂,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑁,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 13552 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
2 ffun 6392 . . . 4 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
31, 2ax-mp 5 . . 3 Fun ♯
4 erdszelem.a . . . 4 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . 5 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . 5 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . 5 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . 5 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 32052 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 683 . . 3 (𝜑 → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6606 . . 3 ((Fun ♯ ∧ (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
123, 10, 11sylancr 587 . 2 (𝜑 → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
13 eqid 2797 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 32048 . . . . 5 (𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠))
15 simprl1 1211 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝐴))
16 elfzuz3 12759 . . . . . . . . . . 11 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
17 fzss2 12801 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
184, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
1918adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (1...𝐴) ⊆ (1...𝑁))
2015, 19sstrd 3905 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝑁))
21 selpw 4466 . . . . . . . 8 (𝑠 ∈ 𝒫 (1...𝑁) ↔ 𝑠 ⊆ (1...𝑁))
2220, 21sylibr 235 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ∈ 𝒫 (1...𝑁))
23 erdszelem7.m . . . . . . . . . . 11 (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
245, 6, 7, 8erdszelem6 32053 . . . . . . . . . . . . . . 15 (𝜑𝐾:(1...𝑁)⟶ℕ)
2524, 4ffvelrnd 6724 . . . . . . . . . . . . . 14 (𝜑 → (𝐾𝐴) ∈ ℕ)
26 nnuz 12134 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2725, 26syl6eleq 2895 . . . . . . . . . . . . 13 (𝜑 → (𝐾𝐴) ∈ (ℤ‘1))
28 erdszelem7.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
29 nnz 11858 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ → 𝑅 ∈ ℤ)
30 peano2zm 11879 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (𝑅 − 1) ∈ ℤ)
3128, 29, 303syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑅 − 1) ∈ ℤ)
32 elfz5 12754 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ (ℤ‘1) ∧ (𝑅 − 1) ∈ ℤ) → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3327, 31, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
34 nnltlem1 11903 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ ℕ ∧ 𝑅 ∈ ℕ) → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3525, 28, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3633, 35bitr4d 283 . . . . . . . . . . 11 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) < 𝑅))
3723, 36mtbid 325 . . . . . . . . . 10 (𝜑 → ¬ (𝐾𝐴) < 𝑅)
3828nnred 11507 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
3913erdszelem2 32049 . . . . . . . . . . . . . 14 ((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ)
4039simpri 486 . . . . . . . . . . . . 13 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ
41 nnssre 11496 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
4240, 41sstri 3904 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℝ
4342, 10sseldi 3893 . . . . . . . . . . 11 (𝜑 → (𝐾𝐴) ∈ ℝ)
4438, 43lenltd 10639 . . . . . . . . . 10 (𝜑 → (𝑅 ≤ (𝐾𝐴) ↔ ¬ (𝐾𝐴) < 𝑅))
4537, 44mpbird 258 . . . . . . . . 9 (𝜑𝑅 ≤ (𝐾𝐴))
4645adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (𝐾𝐴))
47 simprr 769 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (♯‘𝑠) = (𝐾𝐴))
4846, 47breqtrrd 4996 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (♯‘𝑠))
49 simprl2 1212 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))
5022, 48, 49jca32 516 . . . . . 6 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5150expr 457 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠)) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5214, 51sylan2b 593 . . . 4 ((𝜑𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5352expimpd 454 . . 3 (𝜑 → ((𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ∧ (♯‘𝑠) = (𝐾𝐴)) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5453reximdv2 3236 . 2 (𝜑 → (∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5512, 54mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wrex 3108  {crab 3111  Vcvv 3440  cun 3863  wss 3865  𝒫 cpw 4459  {csn 4478   class class class wbr 4968  cmpt 5047   Or wor 5368  cres 5452  cima 5453  Fun wfun 6226  wf 6228  1-1wf1 6229  cfv 6232   Isom wiso 6233  (class class class)co 7023  Fincfn 8364  supcsup 8757  cr 10389  1c1 10391  +∞cpnf 10525   < clt 10528  cle 10529  cmin 10723  cn 11492  0cn0 11751  cz 11835  cuz 12097  ...cfz 12746  chash 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-xnn0 11822  df-z 11836  df-uz 12098  df-fz 12747  df-hash 13545
This theorem is referenced by:  erdszelem11  32058
  Copyright terms: Public domain W3C validator