Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   GIF version

Theorem erdszelem7 35202
Description: Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem7.r (𝜑𝑅 ∈ ℕ)
erdszelem7.m (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
Assertion
Ref Expression
erdszelem7 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Distinct variable groups:   𝑥,𝑦,𝑠,𝐹   𝐾,𝑠   𝐴,𝑠,𝑥,𝑦   𝑂,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑁,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 14377 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
2 ffun 6739 . . . 4 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
31, 2ax-mp 5 . . 3 Fun ♯
4 erdszelem.a . . . 4 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . 5 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . 5 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . 5 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . 5 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 35200 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 687 . . 3 (𝜑 → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6974 . . 3 ((Fun ♯ ∧ (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
123, 10, 11sylancr 587 . 2 (𝜑 → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
13 eqid 2737 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 35196 . . . . 5 (𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠))
15 simprl1 1219 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝐴))
16 elfzuz3 13561 . . . . . . . . . . 11 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
17 fzss2 13604 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
184, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (1...𝐴) ⊆ (1...𝑁))
2015, 19sstrd 3994 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝑁))
21 velpw 4605 . . . . . . . 8 (𝑠 ∈ 𝒫 (1...𝑁) ↔ 𝑠 ⊆ (1...𝑁))
2220, 21sylibr 234 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ∈ 𝒫 (1...𝑁))
23 erdszelem7.m . . . . . . . . . . 11 (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
245, 6, 7, 8erdszelem6 35201 . . . . . . . . . . . . . . 15 (𝜑𝐾:(1...𝑁)⟶ℕ)
2524, 4ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝐾𝐴) ∈ ℕ)
26 nnuz 12921 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2725, 26eleqtrdi 2851 . . . . . . . . . . . . 13 (𝜑 → (𝐾𝐴) ∈ (ℤ‘1))
28 erdszelem7.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
29 nnz 12634 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ → 𝑅 ∈ ℤ)
30 peano2zm 12660 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (𝑅 − 1) ∈ ℤ)
3128, 29, 303syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑅 − 1) ∈ ℤ)
32 elfz5 13556 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ (ℤ‘1) ∧ (𝑅 − 1) ∈ ℤ) → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3327, 31, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
34 nnltlem1 12685 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ ℕ ∧ 𝑅 ∈ ℕ) → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3525, 28, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3633, 35bitr4d 282 . . . . . . . . . . 11 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) < 𝑅))
3723, 36mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝐾𝐴) < 𝑅)
3828nnred 12281 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
3913erdszelem2 35197 . . . . . . . . . . . . . 14 ((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ)
4039simpri 485 . . . . . . . . . . . . 13 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ
41 nnssre 12270 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
4240, 41sstri 3993 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℝ
4342, 10sselid 3981 . . . . . . . . . . 11 (𝜑 → (𝐾𝐴) ∈ ℝ)
4438, 43lenltd 11407 . . . . . . . . . 10 (𝜑 → (𝑅 ≤ (𝐾𝐴) ↔ ¬ (𝐾𝐴) < 𝑅))
4537, 44mpbird 257 . . . . . . . . 9 (𝜑𝑅 ≤ (𝐾𝐴))
4645adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (𝐾𝐴))
47 simprr 773 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (♯‘𝑠) = (𝐾𝐴))
4846, 47breqtrrd 5171 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (♯‘𝑠))
49 simprl2 1220 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))
5022, 48, 49jca32 515 . . . . . 6 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5150expr 456 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠)) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5214, 51sylan2b 594 . . . 4 ((𝜑𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5352expimpd 453 . . 3 (𝜑 → ((𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ∧ (♯‘𝑠) = (𝐾𝐴)) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5453reximdv2 3164 . 2 (𝜑 → (∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5512, 54mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  cun 3949  wss 3951  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225   Or wor 5591  cres 5687  cima 5688  Fun wfun 6555  wf 6557  1-1wf1 6558  cfv 6561   Isom wiso 6562  (class class class)co 7431  Fincfn 8985  supcsup 9480  cr 11154  1c1 11156  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  erdszelem11  35206
  Copyright terms: Public domain W3C validator