Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   GIF version

Theorem erdszelem7 35180
Description: Lemma for erdsze 35185. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem7.r (𝜑𝑅 ∈ ℕ)
erdszelem7.m (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
Assertion
Ref Expression
erdszelem7 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Distinct variable groups:   𝑥,𝑦,𝑠,𝐹   𝐾,𝑠   𝐴,𝑠,𝑥,𝑦   𝑂,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑁,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 14245 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
2 ffun 6655 . . . 4 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
31, 2ax-mp 5 . . 3 Fun ♯
4 erdszelem.a . . . 4 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . 5 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . 5 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . 5 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . 5 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 35178 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 687 . . 3 (𝜑 → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6888 . . 3 ((Fun ♯ ∧ (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
123, 10, 11sylancr 587 . 2 (𝜑 → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
13 eqid 2729 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 35174 . . . . 5 (𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠))
15 simprl1 1219 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝐴))
16 elfzuz3 13424 . . . . . . . . . . 11 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
17 fzss2 13467 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
184, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (1...𝐴) ⊆ (1...𝑁))
2015, 19sstrd 3946 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝑁))
21 velpw 4556 . . . . . . . 8 (𝑠 ∈ 𝒫 (1...𝑁) ↔ 𝑠 ⊆ (1...𝑁))
2220, 21sylibr 234 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ∈ 𝒫 (1...𝑁))
23 erdszelem7.m . . . . . . . . . . 11 (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
245, 6, 7, 8erdszelem6 35179 . . . . . . . . . . . . . . 15 (𝜑𝐾:(1...𝑁)⟶ℕ)
2524, 4ffvelcdmd 7019 . . . . . . . . . . . . . 14 (𝜑 → (𝐾𝐴) ∈ ℕ)
26 nnuz 12778 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2725, 26eleqtrdi 2838 . . . . . . . . . . . . 13 (𝜑 → (𝐾𝐴) ∈ (ℤ‘1))
28 erdszelem7.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
29 nnz 12492 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ → 𝑅 ∈ ℤ)
30 peano2zm 12518 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (𝑅 − 1) ∈ ℤ)
3128, 29, 303syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑅 − 1) ∈ ℤ)
32 elfz5 13419 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ (ℤ‘1) ∧ (𝑅 − 1) ∈ ℤ) → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3327, 31, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
34 nnltlem1 12543 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ ℕ ∧ 𝑅 ∈ ℕ) → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3525, 28, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3633, 35bitr4d 282 . . . . . . . . . . 11 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) < 𝑅))
3723, 36mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝐾𝐴) < 𝑅)
3828nnred 12143 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
3913erdszelem2 35175 . . . . . . . . . . . . . 14 ((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ)
4039simpri 485 . . . . . . . . . . . . 13 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ
41 nnssre 12132 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
4240, 41sstri 3945 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℝ
4342, 10sselid 3933 . . . . . . . . . . 11 (𝜑 → (𝐾𝐴) ∈ ℝ)
4438, 43lenltd 11262 . . . . . . . . . 10 (𝜑 → (𝑅 ≤ (𝐾𝐴) ↔ ¬ (𝐾𝐴) < 𝑅))
4537, 44mpbird 257 . . . . . . . . 9 (𝜑𝑅 ≤ (𝐾𝐴))
4645adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (𝐾𝐴))
47 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (♯‘𝑠) = (𝐾𝐴))
4846, 47breqtrrd 5120 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (♯‘𝑠))
49 simprl2 1220 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))
5022, 48, 49jca32 515 . . . . . 6 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5150expr 456 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠)) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5214, 51sylan2b 594 . . . 4 ((𝜑𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5352expimpd 453 . . 3 (𝜑 → ((𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ∧ (♯‘𝑠) = (𝐾𝐴)) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5453reximdv2 3139 . 2 (𝜑 → (∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5512, 54mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  wss 3903  𝒫 cpw 4551  {csn 4577   class class class wbr 5092  cmpt 5173   Or wor 5526  cres 5621  cima 5622  Fun wfun 6476  wf 6478  1-1wf1 6479  cfv 6482   Isom wiso 6483  (class class class)co 7349  Fincfn 8872  supcsup 9330  cr 11008  1c1 11010  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  erdszelem11  35184
  Copyright terms: Public domain W3C validator