| Step | Hyp | Ref
| Expression |
| 1 | | itg2add.f1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 2 | | itg2add.f2 |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 3 | 1, 2 | mbfi1fseq 25679 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 4 | | itg2add.g1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ MblFn) |
| 5 | | itg2add.g2 |
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) |
| 6 | 4, 5 | mbfi1fseq 25679 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥))) |
| 7 | | exdistrv 1955 |
. . 3
⊢
(∃𝑓∃𝑔((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) |
| 8 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝐹 ∈ MblFn) |
| 9 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝐹:ℝ⟶(0[,)+∞)) |
| 10 | | itg2add.f3 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → (∫2‘𝐹) ∈
ℝ) |
| 12 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝐺 ∈ MblFn) |
| 13 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝐺:ℝ⟶(0[,)+∞)) |
| 14 | | itg2add.g3 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐺)
∈ ℝ) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → (∫2‘𝐺) ∈
ℝ) |
| 16 | | simprl1 1219 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝑓:ℕ⟶dom
∫1) |
| 17 | | simprl2 1220 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1)))) |
| 18 | | simprl3 1221 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| 19 | | simprr1 1222 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → 𝑔:ℕ⟶dom
∫1) |
| 20 | | simprr2 1223 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)))) |
| 21 | | simprr3 1224 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) |
| 22 | 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21 | itg2addlem 25716 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)))) → (∫2‘(𝐹 ∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺))) |
| 23 | 22 | ex 412 |
. . . 4
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥))) → (∫2‘(𝐹 ∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺)))) |
| 24 | 23 | exlimdvv 1934 |
. . 3
⊢ (𝜑 → (∃𝑓∃𝑔((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥))) → (∫2‘(𝐹 ∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺)))) |
| 25 | 7, 24 | biimtrrid 243 |
. 2
⊢ (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥))) → (∫2‘(𝐹 ∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺)))) |
| 26 | 3, 6, 25 | mp2and 699 |
1
⊢ (𝜑 →
(∫2‘(𝐹
∘f + 𝐺)) =
((∫2‘𝐹) + (∫2‘𝐺))) |