MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2add Structured version   Visualization version   GIF version

Theorem itg2add 24359
Description: The 2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2add.f1 (𝜑𝐹 ∈ MblFn)
itg2add.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2add.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2add.g1 (𝜑𝐺 ∈ MblFn)
itg2add.g2 (𝜑𝐺:ℝ⟶(0[,)+∞))
itg2add.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2add (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))

Proof of Theorem itg2add
Dummy variables 𝑓 𝑔 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2add.f1 . . 3 (𝜑𝐹 ∈ MblFn)
2 itg2add.f2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
31, 2mbfi1fseq 24321 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4 itg2add.g1 . . 3 (𝜑𝐺 ∈ MblFn)
5 itg2add.g2 . . 3 (𝜑𝐺:ℝ⟶(0[,)+∞))
64, 5mbfi1fseq 24321 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))
7 exdistrv 1957 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))))
81adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝐹 ∈ MblFn)
92adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝐹:ℝ⟶(0[,)+∞))
10 itg2add.f3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → (∫2𝐹) ∈ ℝ)
124adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝐺 ∈ MblFn)
135adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝐺:ℝ⟶(0[,)+∞))
14 itg2add.g3 . . . . . . 7 (𝜑 → (∫2𝐺) ∈ ℝ)
1514adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → (∫2𝐺) ∈ ℝ)
16 simprl1 1215 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝑓:ℕ⟶dom ∫1)
17 simprl2 1216 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))))
18 simprl3 1217 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥))
19 simprr1 1218 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → 𝑔:ℕ⟶dom ∫1)
20 simprr2 1219 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))))
21 simprr3 1220 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))
228, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21itg2addlem 24358 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥)))) → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
2322ex 416 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))) → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺))))
2423exlimdvv 1936 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))) → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺))))
257, 24syl5bir 246 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐺𝑥))) → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺))))
263, 6, 25mp2and 698 1 (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wral 3133   class class class wbr 5052  cmpt 5132  dom cdm 5542  wf 6339  cfv 6343  (class class class)co 7145  f cof 7397  r cofr 7398  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  cle 10668  cn 11630  [,)cico 12733  cli 14837  MblFncmbf 24214  1citg1 24215  2citg2 24216  0𝑝c0p 24269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-ofr 7400  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-omul 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fi 8866  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-acn 9362  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-q 12342  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-fl 13162  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-rest 16692  df-topgen 16713  df-psmet 20530  df-xmet 20531  df-met 20532  df-bl 20533  df-mopn 20534  df-top 21495  df-topon 21512  df-bases 21547  df-cmp 21988  df-ovol 24064  df-vol 24065  df-mbf 24219  df-itg1 24220  df-itg2 24221  df-0p 24270
This theorem is referenced by:  ibladdlem  24419  itgaddlem1  24422  iblabslem  24427  iblabs  24428
  Copyright terms: Public domain W3C validator