Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝑁 ∈ ℕ) |
2 | | simprl1 1216 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝑍 ∈ (𝔼‘𝑁)) |
3 | | simplr1 1213 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ (𝔼‘𝑁)) |
4 | | simprl2 1217 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝑈 ∈ 𝐴) |
5 | 3, 4 | sseldd 3918 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝑈 ∈ (𝔼‘𝑁)) |
6 | | simprr 769 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝑍 ≠ 𝑈) |
7 | | axcontlem9.1 |
. . . . . 6
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
8 | | axcontlem9.2 |
. . . . . 6
⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
9 | 7, 8 | axcontlem2 27236 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → 𝐹:𝐷–1-1-onto→(0[,)+∞)) |
10 | 1, 2, 5, 6, 9 | syl31anc 1371 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐹:𝐷–1-1-onto→(0[,)+∞)) |
11 | | f1ofun 6702 |
. . . 4
⊢ (𝐹:𝐷–1-1-onto→(0[,)+∞) → Fun 𝐹) |
12 | | fvelima 6817 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ (𝐹 “ 𝐴)) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑛) |
13 | 12 | ex 412 |
. . . 4
⊢ (Fun
𝐹 → (𝑛 ∈ (𝐹 “ 𝐴) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑛)) |
14 | 10, 11, 13 | 3syl 18 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (𝑛 ∈ (𝐹 “ 𝐴) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑛)) |
15 | | fvelima 6817 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑚 ∈ (𝐹 “ 𝐵)) → ∃𝑏 ∈ 𝐵 (𝐹‘𝑏) = 𝑚) |
16 | 15 | ex 412 |
. . . 4
⊢ (Fun
𝐹 → (𝑚 ∈ (𝐹 “ 𝐵) → ∃𝑏 ∈ 𝐵 (𝐹‘𝑏) = 𝑚)) |
17 | 10, 11, 16 | 3syl 18 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (𝑚 ∈ (𝐹 “ 𝐵) → ∃𝑏 ∈ 𝐵 (𝐹‘𝑏) = 𝑚)) |
18 | | reeanv 3292 |
. . . 4
⊢
(∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 ((𝐹‘𝑎) = 𝑛 ∧ (𝐹‘𝑏) = 𝑚) ↔ (∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑛 ∧ ∃𝑏 ∈ 𝐵 (𝐹‘𝑏) = 𝑚)) |
19 | | simplr3 1215 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉) |
20 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝑥 Btwn 〈𝑍, 𝑦〉 ↔ 𝑎 Btwn 〈𝑍, 𝑦〉)) |
21 | | opeq2 4802 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → 〈𝑍, 𝑦〉 = 〈𝑍, 𝑏〉) |
22 | 21 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → (𝑎 Btwn 〈𝑍, 𝑦〉 ↔ 𝑎 Btwn 〈𝑍, 𝑏〉)) |
23 | 20, 22 | rspc2v 3562 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉 → 𝑎 Btwn 〈𝑍, 𝑏〉)) |
24 | 19, 23 | mpan9 506 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 Btwn 〈𝑍, 𝑏〉) |
25 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑁 ∈ ℕ) |
26 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑍 ∈ (𝔼‘𝑁)) |
27 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑈 ∈ (𝔼‘𝑁)) |
28 | 25, 26, 27 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁))) |
29 | | simplrr 774 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑍 ≠ 𝑈) |
30 | 7 | axcontlem4 27238 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ 𝐷) |
31 | 30 | sseld 3916 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝐷)) |
32 | | simpl 482 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉))) |
33 | 7 | axcontlem3 27237 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝐵 ⊆ 𝐷) |
34 | 32, 2, 4, 6, 33 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐵 ⊆ 𝐷) |
35 | 34 | sseld 3916 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (𝑏 ∈ 𝐵 → 𝑏 ∈ 𝐷)) |
36 | 31, 35 | anim12d 608 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷))) |
37 | 36 | imp 406 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) |
38 | 7, 8 | axcontlem7 27241 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎 Btwn 〈𝑍, 𝑏〉 ↔ (𝐹‘𝑎) ≤ (𝐹‘𝑏))) |
39 | 28, 29, 37, 38 | syl21anc 834 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 Btwn 〈𝑍, 𝑏〉 ↔ (𝐹‘𝑎) ≤ (𝐹‘𝑏))) |
40 | 24, 39 | mpbid 231 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑎) ≤ (𝐹‘𝑏)) |
41 | | breq12 5075 |
. . . . . 6
⊢ (((𝐹‘𝑎) = 𝑛 ∧ (𝐹‘𝑏) = 𝑚) → ((𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ 𝑛 ≤ 𝑚)) |
42 | 40, 41 | syl5ibcom 244 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑛 ∧ (𝐹‘𝑏) = 𝑚) → 𝑛 ≤ 𝑚)) |
43 | 42 | rexlimdvva 3222 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ((𝐹‘𝑎) = 𝑛 ∧ (𝐹‘𝑏) = 𝑚) → 𝑛 ≤ 𝑚)) |
44 | 18, 43 | syl5bir 242 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ((∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑛 ∧ ∃𝑏 ∈ 𝐵 (𝐹‘𝑏) = 𝑚) → 𝑛 ≤ 𝑚)) |
45 | 14, 17, 44 | syl2and 607 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ((𝑛 ∈ (𝐹 “ 𝐴) ∧ 𝑚 ∈ (𝐹 “ 𝐵)) → 𝑛 ≤ 𝑚)) |
46 | 45 | ralrimivv 3113 |
1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑛 ∈ (𝐹 “ 𝐴)∀𝑚 ∈ (𝐹 “ 𝐵)𝑛 ≤ 𝑚) |