Step | Hyp | Ref
| Expression |
1 | | df-ne 2944 |
. . 3
⊢ (𝐶 ≠ 𝑐 ↔ ¬ 𝐶 = 𝑐) |
2 | | simp2rl 1241 |
. . . . . . . . . 10
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 𝐶 Btwn 〈𝐴, 𝑑〉) |
3 | 2 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → 𝐶 Btwn 〈𝐴, 𝑑〉) |
4 | | simp2ll 1239 |
. . . . . . . . . 10
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 𝐷 Btwn 〈𝐴, 𝑐〉) |
5 | 4 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → 𝐷 Btwn 〈𝐴, 𝑐〉) |
6 | 3, 5 | jca 512 |
. . . . . . . 8
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 𝐷 Btwn 〈𝐴, 𝑐〉)) |
7 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑁 ∈ ℕ) |
8 | | simprl1 1217 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁)) |
9 | | simpl2 1191 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁)) |
10 | | simprrl 778 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑑 ∈ (𝔼‘𝑁)) |
11 | | btwncom 34316 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝑑〉 ↔ 𝐶 Btwn 〈𝑑, 𝐴〉)) |
12 | 7, 8, 9, 10, 11 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (𝐶 Btwn 〈𝐴, 𝑑〉 ↔ 𝐶 Btwn 〈𝑑, 𝐴〉)) |
13 | | simprl2 1218 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁)) |
14 | | simprl3 1219 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁)) |
15 | | btwncom 34316 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (𝐷 Btwn 〈𝐴, 𝑐〉 ↔ 𝐷 Btwn 〈𝑐, 𝐴〉)) |
16 | 7, 13, 9, 14, 15 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (𝐷 Btwn 〈𝐴, 𝑐〉 ↔ 𝐷 Btwn 〈𝑐, 𝐴〉)) |
17 | 12, 16 | anbi12d 631 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → ((𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 𝐷 Btwn 〈𝐴, 𝑐〉) ↔ (𝐶 Btwn 〈𝑑, 𝐴〉 ∧ 𝐷 Btwn 〈𝑐, 𝐴〉))) |
18 | 6, 17 | syl5ib 243 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → (𝐶 Btwn 〈𝑑, 𝐴〉 ∧ 𝐷 Btwn 〈𝑐, 𝐴〉))) |
19 | | axpasch 27309 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn 〈𝑑, 𝐴〉 ∧ 𝐷 Btwn 〈𝑐, 𝐴〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) |
20 | 7, 10, 14, 9, 8, 13, 19 | syl132anc 1387 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → ((𝐶 Btwn 〈𝑑, 𝐴〉 ∧ 𝐷 Btwn 〈𝑐, 𝐴〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) |
21 | 18, 20 | syld 47 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) |
22 | 21 | imp 407 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) |
23 | | simpll1 1211 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
24 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁)) |
25 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
26 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑑 ∈ (𝔼‘𝑁)) |
27 | | axsegcon 27295 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉)) |
28 | 23, 24, 25, 25, 26, 27 | syl122anc 1378 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉)) |
29 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁)) |
30 | | axsegcon 27295 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) |
31 | 23, 26, 25, 25, 29, 30 | syl122anc 1378 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) |
32 | | reeanv 3294 |
. . . . . . . . 9
⊢
(∃𝑝 ∈
(𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) ↔ (∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) |
33 | 28, 31, 32 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) |
34 | 33 | adantr 481 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) |
35 | 7 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) →
𝑁 ∈
ℕ) |
36 | | simprl 768 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) →
𝑝 ∈
(𝔼‘𝑁)) |
37 | | simprr 770 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) →
𝑟 ∈
(𝔼‘𝑁)) |
38 | | axsegcon 27295 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) |
39 | 35, 36, 37, 37, 36, 38 | syl122anc 1378 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) →
∃𝑞 ∈
(𝔼‘𝑁)(𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) |
40 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)))) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) |
41 | | simp-4l 780 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
(𝑁 ∈ ℕ ∧
𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁))) |
42 | | simplrl 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) |
43 | 42 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁))) |
44 | 10 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑑 ∈
(𝔼‘𝑁)) |
45 | | simprrr 779 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁)) |
46 | 45 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑏 ∈
(𝔼‘𝑁)) |
47 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑒 ∈
(𝔼‘𝑁)) |
48 | 44, 46, 47 | 3jca 1127 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁) ∧
𝑒 ∈
(𝔼‘𝑁))) |
49 | 43, 48 | jca 512 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁) ∧
𝑒 ∈
(𝔼‘𝑁)))) |
50 | | simplrl 774 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑝 ∈
(𝔼‘𝑁)) |
51 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑞 ∈
(𝔼‘𝑁)) |
52 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
𝑟 ∈
(𝔼‘𝑁)) |
53 | 50, 51, 52 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑞 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) |
54 | 41, 49, 53 | 3jca 1127 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) →
((𝑁 ∈ ℕ ∧
𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁) ∧
𝑒 ∈
(𝔼‘𝑁))) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑞 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁)))) |
55 | | simp1ll 1235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 𝐴 ≠ 𝐵) |
56 | 55 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) → 𝐴 ≠ 𝐵) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → 𝐴 ≠ 𝐵) |
58 | | simp1lr 1236 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 𝐵 ≠ 𝐶) |
59 | 58 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) → 𝐵 ≠ 𝐶) |
60 | 59 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → 𝐵 ≠ 𝐶) |
61 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) → 𝐶 ≠ 𝑐) |
62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → 𝐶 ≠ 𝑐) |
63 | 57, 60, 62 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐)) |
64 | | simpl1r 1224 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) |
65 | 64 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) |
66 | 63, 65 | jca 512 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉))) |
67 | | simpll2 1212 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) → ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉))) |
68 | 67 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉))) |
69 | | simpl3l 1227 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → (𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉)) |
70 | 69 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉)) |
71 | | simpl3r 1228 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) → (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)) |
72 | 71 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)) |
73 | 70, 72 | jca 512 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) |
74 | 66, 68, 73 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) |
75 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) |
76 | | simplrl 774 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉)) |
77 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) |
78 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) |
79 | 76, 77, 78 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉))) |
80 | 74, 75, 79 | jca32 516 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉)) → ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉))))) |
81 | | btwnconn1lem12 34400 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑞 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉))))) → 𝐷 = 𝑑) |
82 | 54, 80, 81 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
𝑞 ∈
(𝔼‘𝑁)) ∧
(((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉))) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉))) → 𝐷 = 𝑑) |
83 | 82 | an4s 657 |
. . . . . . . . . . 11
⊢
(((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)))) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn 〈𝑝, 𝑞〉 ∧ 〈𝑟, 𝑞〉Cgr〈𝑟, 𝑝〉))) → 𝐷 = 𝑑) |
84 | 40, 83 | rexlimddv 3220 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(𝑝 ∈
(𝔼‘𝑁) ∧
𝑟 ∈
(𝔼‘𝑁))) ∧
((((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)))) → 𝐷 = 𝑑) |
85 | 84 | an4s 657 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) ∧ ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ ((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)))) → 𝐷 = 𝑑) |
86 | 85 | exp32 421 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) → ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) → (((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) → 𝐷 = 𝑑))) |
87 | 86 | rexlimdvv 3222 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) → (∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn 〈𝑐, 𝑝〉 ∧ 〈𝐶, 𝑝〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑟〉 ∧ 〈𝐶, 𝑟〉Cgr〈𝐶, 𝑒〉)) → 𝐷 = 𝑑)) |
88 | 34, 87 | mpd 15 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) → 𝐷 = 𝑑) |
89 | 88 | an4s 657 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
((𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝑐 ∈
(𝔼‘𝑁)) ∧
(𝑑 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)))) ∧
((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ (𝑒 Btwn 〈𝐶, 𝑐〉 ∧ 𝑒 Btwn 〈𝐷, 𝑑〉))) → 𝐷 = 𝑑) |
90 | 22, 89 | rexlimddv 3220 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ 𝐶 ≠ 𝑐)) → 𝐷 = 𝑑) |
91 | 90 | expr 457 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (𝐶 ≠ 𝑐 → 𝐷 = 𝑑)) |
92 | 1, 91 | syl5bir 242 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (¬ 𝐶 = 𝑐 → 𝐷 = 𝑑)) |
93 | 92 | orrd 860 |
1
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (𝐶 = 𝑐 ∨ 𝐷 = 𝑑)) |