Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem13 Structured version   Visualization version   GIF version

Theorem btwnconn1lem13 32795
Description: Lemma for btwnconn1 32797. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (𝐶 = 𝑐𝐷 = 𝑑))

Proof of Theorem btwnconn1lem13
Dummy variables 𝑒 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2969 . . 3 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
2 simp2rl 1280 . . . . . . . . . 10 ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐶 Btwn ⟨𝐴, 𝑑⟩)
32adantr 474 . . . . . . . . 9 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → 𝐶 Btwn ⟨𝐴, 𝑑⟩)
4 simp2ll 1278 . . . . . . . . . 10 ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐷 Btwn ⟨𝐴, 𝑐⟩)
54adantr 474 . . . . . . . . 9 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → 𝐷 Btwn ⟨𝐴, 𝑐⟩)
63, 5jca 507 . . . . . . . 8 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ 𝐷 Btwn ⟨𝐴, 𝑐⟩))
7 simpl1 1199 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑁 ∈ ℕ)
8 simprl1 1238 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁))
9 simpl2 1201 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
10 simprrl 771 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑑 ∈ (𝔼‘𝑁))
11 btwncom 32710 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝑑⟩ ↔ 𝐶 Btwn ⟨𝑑, 𝐴⟩))
127, 8, 9, 10, 11syl13anc 1440 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (𝐶 Btwn ⟨𝐴, 𝑑⟩ ↔ 𝐶 Btwn ⟨𝑑, 𝐴⟩))
13 simprl2 1240 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁))
14 simprl3 1242 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁))
15 btwncom 32710 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐷 Btwn ⟨𝑐, 𝐴⟩))
167, 13, 9, 14, 15syl13anc 1440 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (𝐷 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐷 Btwn ⟨𝑐, 𝐴⟩))
1712, 16anbi12d 624 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → ((𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ 𝐷 Btwn ⟨𝐴, 𝑐⟩) ↔ (𝐶 Btwn ⟨𝑑, 𝐴⟩ ∧ 𝐷 Btwn ⟨𝑐, 𝐴⟩)))
186, 17syl5ib 236 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → (𝐶 Btwn ⟨𝑑, 𝐴⟩ ∧ 𝐷 Btwn ⟨𝑐, 𝐴⟩)))
19 axpasch 26290 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝑑, 𝐴⟩ ∧ 𝐷 Btwn ⟨𝑐, 𝐴⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)))
207, 10, 14, 9, 8, 13, 19syl132anc 1456 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → ((𝐶 Btwn ⟨𝑑, 𝐴⟩ ∧ 𝐷 Btwn ⟨𝑐, 𝐴⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)))
2118, 20syld 47 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)))
2221imp 397 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))
23 simpll1 1226 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2414adantr 474 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
258adantr 474 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
2610adantr 474 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑑 ∈ (𝔼‘𝑁))
27 axsegcon 26276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩))
2823, 24, 25, 25, 26, 27syl122anc 1447 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩))
29 simpr 479 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁))
30 axsegcon 26276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))
3123, 26, 25, 25, 29, 30syl122anc 1447 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))
32 reeanv 3292 . . . . . . . . 9 (∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)) ↔ (∃𝑝 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ ∃𝑟 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))
3328, 31, 32sylanbrc 578 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))
3433adantr 474 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))
357ad2antrr 716 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
36 simprl 761 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) → 𝑝 ∈ (𝔼‘𝑁))
37 simprr 763 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) → 𝑟 ∈ (𝔼‘𝑁))
38 axsegcon 26276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))
3935, 36, 37, 37, 36, 38syl122anc 1447 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))
4039adantr 474 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ ((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))
41 simp-4l 773 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
42 simplrl 767 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)))
4342ad2antrr 716 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)))
4410ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑑 ∈ (𝔼‘𝑁))
45 simprrr 772 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
4645ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (𝔼‘𝑁))
47 simpllr 766 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁))
4844, 46, 473jca 1119 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)))
4943, 48jca 507 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))))
50 simplrl 767 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑝 ∈ (𝔼‘𝑁))
51 simpr 479 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑞 ∈ (𝔼‘𝑁))
52 simplrr 768 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → 𝑟 ∈ (𝔼‘𝑁))
5350, 51, 523jca 1119 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑞 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)))
5441, 49, 533jca 1119 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑞 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))))
55 simp1ll 1274 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐴𝐵)
5655ad3antrrr 720 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) → 𝐴𝐵)
5756adantr 474 . . . . . . . . . . . . . . . . 17 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → 𝐴𝐵)
58 simp1lr 1275 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐵𝐶)
5958ad3antrrr 720 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) → 𝐵𝐶)
6059adantr 474 . . . . . . . . . . . . . . . . 17 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → 𝐵𝐶)
61 simpllr 766 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) → 𝐶𝑐)
6261adantr 474 . . . . . . . . . . . . . . . . 17 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → 𝐶𝑐)
6357, 60, 623jca 1119 . . . . . . . . . . . . . . . 16 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝐴𝐵𝐵𝐶𝐶𝑐))
64 simpl1r 1252 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
6564ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
6663, 65jca 507 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → ((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)))
67 simpll2 1228 . . . . . . . . . . . . . . . 16 ((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) → ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)))
6867ad2antrr 716 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)))
69 simpl3l 1258 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → (𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩))
7069ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩))
71 simpl3r 1260 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) → (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))
7271ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))
7370, 72jca 507 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))
7466, 68, 733jca 1119 . . . . . . . . . . . . . 14 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))))
75 simpllr 766 . . . . . . . . . . . . . 14 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))
76 simplrl 767 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩))
77 simplrr 768 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))
78 simpr 479 . . . . . . . . . . . . . . 15 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))
7976, 77, 783jca 1119 . . . . . . . . . . . . . 14 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)))
8074, 75, 79jca32 511 . . . . . . . . . . . . 13 ((((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)) → ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩)))))
81 btwnconn1lem12 32794 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑞 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))))) → 𝐷 = 𝑑)
8254, 80, 81syl2an 589 . . . . . . . . . . . 12 (((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ 𝑞 ∈ (𝔼‘𝑁)) ∧ (((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩))) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))) → 𝐷 = 𝑑)
8382an4s 650 . . . . . . . . . . 11 (((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ ((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))) ∧ (𝑞 ∈ (𝔼‘𝑁) ∧ (𝑟 Btwn ⟨𝑝, 𝑞⟩ ∧ ⟨𝑟, 𝑞⟩Cgr⟨𝑟, 𝑝⟩))) → 𝐷 = 𝑑)
8440, 83rexlimddv 3217 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁))) ∧ ((((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))) → 𝐷 = 𝑑)
8584an4s 650 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) ∧ ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) ∧ ((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)))) → 𝐷 = 𝑑)
8685exp32 413 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) → ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁)) → (((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)) → 𝐷 = 𝑑)))
8786rexlimdvv 3219 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) → (∃𝑝 ∈ (𝔼‘𝑁)∃𝑟 ∈ (𝔼‘𝑁)((𝐶 Btwn ⟨𝑐, 𝑝⟩ ∧ ⟨𝐶, 𝑝⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑟⟩ ∧ ⟨𝐶, 𝑟⟩Cgr⟨𝐶, 𝑒⟩)) → 𝐷 = 𝑑))
8834, 87mpd 15 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) → 𝐷 = 𝑑)
8988an4s 650 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ (𝑒 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝑑⟩))) → 𝐷 = 𝑑)
9022, 89rexlimddv 3217 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ ((((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ 𝐶𝑐)) → 𝐷 = 𝑑)
9190expr 450 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (𝐶𝑐𝐷 = 𝑑))
921, 91syl5bir 235 . 2 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (¬ 𝐶 = 𝑐𝐷 = 𝑑))
9392orrd 852 1 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (𝐶 = 𝑐𝐷 = 𝑑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wrex 3090  cop 4403   class class class wbr 4886  cfv 6135  cn 11374  𝔼cee 26237   Btwn cbtwn 26238  Cgrccgr 26239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-ee 26240  df-btwn 26241  df-cgr 26242  df-ofs 32679  df-colinear 32735  df-ifs 32736  df-cgr3 32737  df-fs 32738
This theorem is referenced by:  btwnconn1lem14  32796
  Copyright terms: Public domain W3C validator