![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 725 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: poxp3 8130 ttrcltr 9707 pwfseqlem5 10654 icodiamlt 15379 issubc3 17798 pgpfac1lem5 19991 clsconn 23256 txlly 23462 txnlly 23463 itg2add 25611 ftc1a 25894 nosupprefixmo 27549 noinfprefixmo 27550 nosupbnd2 27565 noinfbnd2 27580 mulsprop 27946 f1otrg 28591 ax5seglem6 28661 axcontlem10 28700 numclwwlk5 30110 locfinref 33310 btwnouttr2 35489 btwnconn1lem13 35566 midofsegid 35571 outsideofeq 35597 ivthALT 35710 mpaaeu 42381 dfsalgen2 45542 |
Copyright terms: Public domain | W3C validator |