MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Structured version   Visualization version   GIF version

Theorem simprl3 1221
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl3 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)

Proof of Theorem simprl3
StepHypRef Expression
1 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8149  ttrcltr  9730  pwfseqlem5  10677  icodiamlt  15454  issubc3  17862  pgpfac1lem5  20062  clsconn  23368  txlly  23574  txnlly  23575  itg2add  25712  ftc1a  25996  nosupprefixmo  27664  noinfprefixmo  27665  nosupbnd2  27680  noinfbnd2  27695  mulsprop  28085  f1otrg  28850  ax5seglem6  28913  axcontlem10  28952  numclwwlk5  30369  locfinref  33872  btwnouttr2  36040  btwnconn1lem13  36117  midofsegid  36122  outsideofeq  36148  ivthALT  36353  mpaaeu  43174  dfsalgen2  46370  grtrimap  47960
  Copyright terms: Public domain W3C validator