![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 699 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: pwfseqlem5 9686 icodiamlt 14381 issubc3 16715 pgpfac1lem5 18685 clsconn 21453 txlly 21659 txnlly 21660 itg2add 23745 ftc1a 24019 f1otrg 25971 ax5seglem6 26034 axcontlem10 26073 numclwwlk5 27581 locfinref 30242 noprefixmo 32179 nosupbnd2 32193 btwnouttr2 32460 btwnconn1lem13 32537 midofsegid 32542 outsideofeq 32568 ivthALT 32661 mpaaeu 38239 dfsalgen2 41070 |
Copyright terms: Public domain | W3C validator |