Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 726 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: ttrcltr 9518 pwfseqlem5 10465 icodiamlt 15192 issubc3 17609 pgpfac1lem5 19727 clsconn 22626 txlly 22832 txnlly 22833 itg2add 24969 ftc1a 25246 f1otrg 27277 ax5seglem6 27347 axcontlem10 27386 numclwwlk5 28797 locfinref 31836 nosupprefixmo 33948 noinfprefixmo 33949 nosupbnd2 33964 noinfbnd2 33979 btwnouttr2 34369 btwnconn1lem13 34446 midofsegid 34451 outsideofeq 34477 ivthALT 34569 mpaaeu 41013 dfsalgen2 43929 |
Copyright terms: Public domain | W3C validator |