Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 724 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ttrcltr 9435 pwfseqlem5 10403 icodiamlt 15128 issubc3 17545 pgpfac1lem5 19663 clsconn 22562 txlly 22768 txnlly 22769 itg2add 24905 ftc1a 25182 f1otrg 27213 ax5seglem6 27283 axcontlem10 27322 numclwwlk5 28731 locfinref 31770 nosupprefixmo 33882 noinfprefixmo 33883 nosupbnd2 33898 noinfbnd2 33913 btwnouttr2 34303 btwnconn1lem13 34380 midofsegid 34385 outsideofeq 34411 ivthALT 34503 mpaaeu 40955 dfsalgen2 43834 |
Copyright terms: Public domain | W3C validator |