| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8090 ttrcltr 9631 pwfseqlem5 10576 icodiamlt 15363 issubc3 17774 pgpfac1lem5 19978 clsconn 23333 txlly 23539 txnlly 23540 itg2add 25676 ftc1a 25960 nosupprefixmo 27628 noinfprefixmo 27629 nosupbnd2 27644 noinfbnd2 27659 mulsprop 28056 f1otrg 28834 ax5seglem6 28897 axcontlem10 28936 numclwwlk5 30350 locfinref 33810 btwnouttr2 35998 btwnconn1lem13 36075 midofsegid 36080 outsideofeq 36106 ivthALT 36311 mpaaeu 43126 dfsalgen2 46326 grtrimap 47936 |
| Copyright terms: Public domain | W3C validator |