| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8089 ttrcltr 9617 pwfseqlem5 10565 icodiamlt 15352 issubc3 17764 pgpfac1lem5 20001 clsconn 23365 txlly 23571 txnlly 23572 itg2add 25707 ftc1a 25991 nosupprefixmo 27659 noinfprefixmo 27660 nosupbnd2 27675 noinfbnd2 27690 mulsprop 28089 f1otrg 28869 ax5seglem6 28933 axcontlem10 28972 numclwwlk5 30389 locfinref 33926 btwnouttr2 36138 btwnconn1lem13 36215 midofsegid 36220 outsideofeq 36246 ivthALT 36451 mpaaeu 43307 dfsalgen2 46501 grtrimap 48110 |
| Copyright terms: Public domain | W3C validator |