| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8132 ttrcltr 9676 pwfseqlem5 10623 icodiamlt 15411 issubc3 17818 pgpfac1lem5 20018 clsconn 23324 txlly 23530 txnlly 23531 itg2add 25667 ftc1a 25951 nosupprefixmo 27619 noinfprefixmo 27620 nosupbnd2 27635 noinfbnd2 27650 mulsprop 28040 f1otrg 28805 ax5seglem6 28868 axcontlem10 28907 numclwwlk5 30324 locfinref 33838 btwnouttr2 36017 btwnconn1lem13 36094 midofsegid 36099 outsideofeq 36125 ivthALT 36330 mpaaeu 43146 dfsalgen2 46346 grtrimap 47951 |
| Copyright terms: Public domain | W3C validator |