MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Structured version   Visualization version   GIF version

Theorem simprl3 1218
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl3 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)

Proof of Theorem simprl3
StepHypRef Expression
1 simp3 1136 . 2 ((𝜑𝜓𝜒) → 𝜒)
21ad2antrl 724 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ttrcltr  9435  pwfseqlem5  10403  icodiamlt  15128  issubc3  17545  pgpfac1lem5  19663  clsconn  22562  txlly  22768  txnlly  22769  itg2add  24905  ftc1a  25182  f1otrg  27213  ax5seglem6  27283  axcontlem10  27322  numclwwlk5  28731  locfinref  31770  nosupprefixmo  33882  noinfprefixmo  33883  nosupbnd2  33898  noinfbnd2  33913  btwnouttr2  34303  btwnconn1lem13  34380  midofsegid  34385  outsideofeq  34411  ivthALT  34503  mpaaeu  40955  dfsalgen2  43834
  Copyright terms: Public domain W3C validator