Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 727 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: pwfseqlem5 10136 icodiamlt 14856 issubc3 17191 pgpfac1lem5 19282 clsconn 22143 txlly 22349 txnlly 22350 itg2add 24472 ftc1a 24749 f1otrg 26777 ax5seglem6 26840 axcontlem10 26879 numclwwlk5 28285 locfinref 31324 nosupprefixmo 33500 noinfprefixmo 33501 nosupbnd2 33516 noinfbnd2 33531 btwnouttr2 33907 btwnconn1lem13 33984 midofsegid 33989 outsideofeq 34015 ivthALT 34107 mpaaeu 40502 dfsalgen2 43382 |
Copyright terms: Public domain | W3C validator |