![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 727 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp3 8191 ttrcltr 9785 pwfseqlem5 10732 icodiamlt 15484 issubc3 17913 pgpfac1lem5 20123 clsconn 23459 txlly 23665 txnlly 23666 itg2add 25814 ftc1a 26098 nosupprefixmo 27763 noinfprefixmo 27764 nosupbnd2 27779 noinfbnd2 27794 mulsprop 28174 f1otrg 28897 ax5seglem6 28967 axcontlem10 29006 numclwwlk5 30420 locfinref 33787 btwnouttr2 35986 btwnconn1lem13 36063 midofsegid 36068 outsideofeq 36094 ivthALT 36301 mpaaeu 43107 dfsalgen2 46262 grtrimap 47797 |
Copyright terms: Public domain | W3C validator |