| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl3 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8075 ttrcltr 9601 pwfseqlem5 10549 icodiamlt 15340 issubc3 17751 pgpfac1lem5 19988 clsconn 23340 txlly 23546 txnlly 23547 itg2add 25682 ftc1a 25966 nosupprefixmo 27634 noinfprefixmo 27635 nosupbnd2 27650 noinfbnd2 27665 mulsprop 28064 f1otrg 28844 ax5seglem6 28907 axcontlem10 28946 numclwwlk5 30360 locfinref 33846 btwnouttr2 36056 btwnconn1lem13 36133 midofsegid 36138 outsideofeq 36164 ivthALT 36369 mpaaeu 43183 dfsalgen2 46379 grtrimap 47979 |
| Copyright terms: Public domain | W3C validator |