MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Structured version   Visualization version   GIF version

Theorem simprl3 1217
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl3 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)

Proof of Theorem simprl3
StepHypRef Expression
1 simp3 1135 . 2 ((𝜑𝜓𝜒) → 𝜒)
21ad2antrl 725 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086
This theorem is referenced by:  poxp3  8130  ttrcltr  9707  pwfseqlem5  10654  icodiamlt  15379  issubc3  17798  pgpfac1lem5  19991  clsconn  23256  txlly  23462  txnlly  23463  itg2add  25611  ftc1a  25894  nosupprefixmo  27549  noinfprefixmo  27550  nosupbnd2  27565  noinfbnd2  27580  mulsprop  27946  f1otrg  28591  ax5seglem6  28661  axcontlem10  28700  numclwwlk5  30110  locfinref  33310  btwnouttr2  35489  btwnconn1lem13  35566  midofsegid  35571  outsideofeq  35597  ivthALT  35710  mpaaeu  42381  dfsalgen2  45542
  Copyright terms: Public domain W3C validator