MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Structured version   Visualization version   GIF version

Theorem simprl3 1221
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprl3 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)

Proof of Theorem simprl3
StepHypRef Expression
1 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
21ad2antrl 728 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8132  ttrcltr  9676  pwfseqlem5  10623  icodiamlt  15411  issubc3  17818  pgpfac1lem5  20018  clsconn  23324  txlly  23530  txnlly  23531  itg2add  25667  ftc1a  25951  nosupprefixmo  27619  noinfprefixmo  27620  nosupbnd2  27635  noinfbnd2  27650  mulsprop  28040  f1otrg  28805  ax5seglem6  28868  axcontlem10  28907  numclwwlk5  30324  locfinref  33838  btwnouttr2  36017  btwnconn1lem13  36094  midofsegid  36099  outsideofeq  36125  ivthALT  36330  mpaaeu  43146  dfsalgen2  46346  grtrimap  47951
  Copyright terms: Public domain W3C validator