MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txlly Structured version   Visualization version   GIF version

Theorem txlly 23574
Description: If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
txlly.1 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
Assertion
Ref Expression
txlly ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑅,𝑗,𝑘   𝑆,𝑘
Allowed substitution hint:   𝑆(𝑗)

Proof of Theorem txlly
Dummy variables 𝑟 𝑠 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23410 . . 3 (𝑅 ∈ Locally 𝐴𝑅 ∈ Top)
2 llytop 23410 . . 3 (𝑆 ∈ Locally 𝐴𝑆 ∈ Top)
3 txtop 23507 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Top)
5 eltx 23506 . . . 4 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥)))
6 simpll 766 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑅 ∈ Locally 𝐴)
7 simprll 778 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑢𝑅)
8 simprrl 780 . . . . . . . . . 10 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑦 ∈ (𝑢 × 𝑣))
9 xp1st 8020 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (1st𝑦) ∈ 𝑢)
108, 9syl 17 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (1st𝑦) ∈ 𝑢)
11 llyi 23412 . . . . . . . . 9 ((𝑅 ∈ Locally 𝐴𝑢𝑅 ∧ (1st𝑦) ∈ 𝑢) → ∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴))
126, 7, 10, 11syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴))
13 simplr 768 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑆 ∈ Locally 𝐴)
14 simprlr 779 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑣𝑆)
15 xp2nd 8021 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (2nd𝑦) ∈ 𝑣)
168, 15syl 17 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (2nd𝑦) ∈ 𝑣)
17 llyi 23412 . . . . . . . . 9 ((𝑆 ∈ Locally 𝐴𝑣𝑆 ∧ (2nd𝑦) ∈ 𝑣) → ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))
1813, 14, 16, 17syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))
19 reeanv 3213 . . . . . . . . 9 (∃𝑟𝑅𝑠𝑆 ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) ↔ (∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))
201ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑅 ∈ Top)
212ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑆 ∈ Top)
22 simprll 778 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑟𝑅)
23 simprlr 779 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑠𝑆)
24 txopn 23540 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑟𝑅𝑠𝑆)) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
2520, 21, 22, 23, 24syl22anc 838 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
26 simprl1 1219 . . . . . . . . . . . . . . . 16 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → 𝑟𝑢)
27 simprr1 1222 . . . . . . . . . . . . . . . 16 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → 𝑠𝑣)
28 xpss12 5669 . . . . . . . . . . . . . . . 16 ((𝑟𝑢𝑠𝑣) → (𝑟 × 𝑠) ⊆ (𝑢 × 𝑣))
2926, 27, 28syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑟 × 𝑠) ⊆ (𝑢 × 𝑣))
30 simprrr 781 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (𝑢 × 𝑣) ⊆ 𝑥)
3129, 30sylan9ssr 3973 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ⊆ 𝑥)
32 vex 3463 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3332elpw2 5304 . . . . . . . . . . . . . 14 ((𝑟 × 𝑠) ∈ 𝒫 𝑥 ↔ (𝑟 × 𝑠) ⊆ 𝑥)
3431, 33sylibr 234 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ 𝒫 𝑥)
3525, 34elind 4175 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥))
36 1st2nd2 8027 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑢 × 𝑣) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
378, 36syl 17 . . . . . . . . . . . . . 14 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3837adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
39 simprl2 1220 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (1st𝑦) ∈ 𝑟)
40 simprr2 1223 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (2nd𝑦) ∈ 𝑠)
4139, 40opelxpd 5693 . . . . . . . . . . . . . 14 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
4241adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
4338, 42eqeltrd 2834 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑦 ∈ (𝑟 × 𝑠))
44 txrest 23569 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑟𝑅𝑠𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) = ((𝑅t 𝑟) ×t (𝑆t 𝑠)))
4520, 21, 22, 23, 44syl22anc 838 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) = ((𝑅t 𝑟) ×t (𝑆t 𝑠)))
46 simprl3 1221 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑅t 𝑟) ∈ 𝐴)
47 simprr3 1224 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑆t 𝑠) ∈ 𝐴)
48 txlly.1 . . . . . . . . . . . . . . . 16 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
4948caovcl 7601 . . . . . . . . . . . . . . 15 (((𝑅t 𝑟) ∈ 𝐴 ∧ (𝑆t 𝑠) ∈ 𝐴) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5046, 47, 49syl2anc 584 . . . . . . . . . . . . . 14 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5150adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5245, 51eqeltrd 2834 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)
53 eleq2 2823 . . . . . . . . . . . . . 14 (𝑧 = (𝑟 × 𝑠) → (𝑦𝑧𝑦 ∈ (𝑟 × 𝑠)))
54 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑧 = (𝑟 × 𝑠) → ((𝑅 ×t 𝑆) ↾t 𝑧) = ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)))
5554eleq1d 2819 . . . . . . . . . . . . . 14 (𝑧 = (𝑟 × 𝑠) → (((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴 ↔ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴))
5653, 55anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = (𝑟 × 𝑠) → ((𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴) ↔ (𝑦 ∈ (𝑟 × 𝑠) ∧ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)))
5756rspcev 3601 . . . . . . . . . . . 12 (((𝑟 × 𝑠) ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑟 × 𝑠) ∧ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
5835, 43, 52, 57syl12anc 836 . . . . . . . . . . 11 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
5958expr 456 . . . . . . . . . 10 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ (𝑟𝑅𝑠𝑆)) → (((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6059rexlimdvva 3198 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (∃𝑟𝑅𝑠𝑆 ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6119, 60biimtrrid 243 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ((∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6212, 18, 61mp2and 699 . . . . . . 7 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
6362expr 456 . . . . . 6 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ (𝑢𝑅𝑣𝑆)) → ((𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6463rexlimdvva 3198 . . . . 5 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (∃𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6564ralimdv 3154 . . . 4 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
665, 65sylbid 240 . . 3 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) → ∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6766ralrimiv 3131 . 2 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
68 islly 23406 . 2 ((𝑅 ×t 𝑆) ∈ Locally 𝐴 ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
694, 67, 68sylanbrc 583 1 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575  cop 4607   × cxp 5652  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  t crest 17434  Topctop 22831  Locally clly 23402   ×t ctx 23498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-rest 17436  df-topgen 17457  df-top 22832  df-bases 22884  df-lly 23404  df-tx 23500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator