| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8079 poxp3 8086 pwfseqlem1 10556 pwfseqlem5 10561 icodiamlt 15347 issubc3 17758 pgpfac1lem5 19995 clsconn 23346 txlly 23552 txnlly 23553 itg2add 25688 ftc1a 25972 nosupprefixmo 27640 noinfprefixmo 27641 nosupbnd2 27656 noinfbnd2 27671 mulsprop 28070 f1otrg 28850 ax5seglem6 28914 axcontlem9 28952 axcontlem10 28953 elwspths2spth 29950 wwlksext2clwwlk 30039 locfinref 33875 erdszelem7 35262 cvmlift2lem10 35377 btwnouttr2 36087 btwnconn1lem13 36164 broutsideof2 36187 mpaaeu 43267 dfsalgen2 46463 fundcmpsurinjpreimafv 47532 grtrimap 48072 digexp 48732 line2xlem 48878 |
| Copyright terms: Public domain | W3C validator |