| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8122 poxp3 8129 pwfseqlem1 10611 pwfseqlem5 10616 icodiamlt 15404 issubc3 17811 pgpfac1lem5 20011 clsconn 23317 txlly 23523 txnlly 23524 itg2add 25660 ftc1a 25944 nosupprefixmo 27612 noinfprefixmo 27613 nosupbnd2 27628 noinfbnd2 27643 mulsprop 28033 f1otrg 28798 ax5seglem6 28861 axcontlem9 28899 axcontlem10 28900 elwspths2spth 29897 wwlksext2clwwlk 29986 locfinref 33831 erdszelem7 35184 cvmlift2lem10 35299 btwnouttr2 36010 btwnconn1lem13 36087 broutsideof2 36110 mpaaeu 43139 dfsalgen2 46339 fundcmpsurinjpreimafv 47409 grtrimap 47947 digexp 48596 line2xlem 48742 |
| Copyright terms: Public domain | W3C validator |