![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antrl 727 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp2 8184 poxp3 8191 pwfseqlem1 10727 pwfseqlem5 10732 icodiamlt 15484 issubc3 17913 pgpfac1lem5 20123 clsconn 23459 txlly 23665 txnlly 23666 itg2add 25814 ftc1a 26098 nosupprefixmo 27763 noinfprefixmo 27764 nosupbnd2 27779 noinfbnd2 27794 mulsprop 28174 f1otrg 28897 ax5seglem6 28967 axcontlem9 29005 axcontlem10 29006 elwspths2spth 30000 wwlksext2clwwlk 30089 locfinref 33787 erdszelem7 35165 cvmlift2lem10 35280 btwnouttr2 35986 btwnconn1lem13 36063 broutsideof2 36086 mpaaeu 43107 dfsalgen2 46262 fundcmpsurinjpreimafv 47282 grtrimap 47797 digexp 48341 line2xlem 48487 |
Copyright terms: Public domain | W3C validator |