| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8147 poxp3 8154 pwfseqlem1 10677 pwfseqlem5 10682 icodiamlt 15459 issubc3 17867 pgpfac1lem5 20067 clsconn 23373 txlly 23579 txnlly 23580 itg2add 25717 ftc1a 26001 nosupprefixmo 27669 noinfprefixmo 27670 nosupbnd2 27685 noinfbnd2 27700 mulsprop 28090 f1otrg 28855 ax5seglem6 28918 axcontlem9 28956 axcontlem10 28957 elwspths2spth 29954 wwlksext2clwwlk 30043 locfinref 33877 erdszelem7 35224 cvmlift2lem10 35339 btwnouttr2 36045 btwnconn1lem13 36122 broutsideof2 36145 mpaaeu 43141 dfsalgen2 46337 fundcmpsurinjpreimafv 47389 grtrimap 47927 digexp 48554 line2xlem 48700 |
| Copyright terms: Public domain | W3C validator |