![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1167 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antrl 720 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: pwfseqlem1 9768 pwfseqlem5 9773 icodiamlt 14515 issubc3 16823 pgpfac1lem5 18794 clsconn 21562 txlly 21768 txnlly 21769 itg2add 23867 ftc1a 24141 f1otrg 26108 ax5seglem6 26171 axcontlem9 26209 axcontlem10 26210 elwspths2spth 27258 wwlksext2clwwlk 27373 locfinref 30424 erdszelem7 31696 cvmlift2lem10 31811 noprefixmo 32361 nosupbnd2 32375 btwnouttr2 32642 btwnconn1lem13 32719 broutsideof2 32742 mpaaeu 38505 dfsalgen2 41302 digexp 43200 |
Copyright terms: Public domain | W3C validator |