| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8083 poxp3 8090 pwfseqlem1 10571 pwfseqlem5 10576 icodiamlt 15363 issubc3 17774 pgpfac1lem5 19978 clsconn 23333 txlly 23539 txnlly 23540 itg2add 25676 ftc1a 25960 nosupprefixmo 27628 noinfprefixmo 27629 nosupbnd2 27644 noinfbnd2 27659 mulsprop 28056 f1otrg 28834 ax5seglem6 28897 axcontlem9 28935 axcontlem10 28936 elwspths2spth 29930 wwlksext2clwwlk 30019 locfinref 33807 erdszelem7 35169 cvmlift2lem10 35284 btwnouttr2 35995 btwnconn1lem13 36072 broutsideof2 36095 mpaaeu 43123 dfsalgen2 46323 fundcmpsurinjpreimafv 47393 grtrimap 47933 digexp 48593 line2xlem 48739 |
| Copyright terms: Public domain | W3C validator |