| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 poxp3 8132 pwfseqlem1 10618 pwfseqlem5 10623 icodiamlt 15411 issubc3 17818 pgpfac1lem5 20018 clsconn 23324 txlly 23530 txnlly 23531 itg2add 25667 ftc1a 25951 nosupprefixmo 27619 noinfprefixmo 27620 nosupbnd2 27635 noinfbnd2 27650 mulsprop 28040 f1otrg 28805 ax5seglem6 28868 axcontlem9 28906 axcontlem10 28907 elwspths2spth 29904 wwlksext2clwwlk 29993 locfinref 33838 erdszelem7 35191 cvmlift2lem10 35306 btwnouttr2 36017 btwnconn1lem13 36094 broutsideof2 36117 mpaaeu 43146 dfsalgen2 46346 fundcmpsurinjpreimafv 47413 grtrimap 47951 digexp 48600 line2xlem 48746 |
| Copyright terms: Public domain | W3C validator |