| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprl1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 poxp3 8080 pwfseqlem1 10546 pwfseqlem5 10551 icodiamlt 15342 issubc3 17753 pgpfac1lem5 19991 clsconn 23343 txlly 23549 txnlly 23550 itg2add 25685 ftc1a 25969 nosupprefixmo 27637 noinfprefixmo 27638 nosupbnd2 27653 noinfbnd2 27668 mulsprop 28067 f1otrg 28847 ax5seglem6 28910 axcontlem9 28948 axcontlem10 28949 elwspths2spth 29943 wwlksext2clwwlk 30032 locfinref 33849 erdszelem7 35229 cvmlift2lem10 35344 btwnouttr2 36055 btwnconn1lem13 36132 broutsideof2 36155 mpaaeu 43182 dfsalgen2 46378 fundcmpsurinjpreimafv 47438 grtrimap 47978 digexp 48638 line2xlem 48784 |
| Copyright terms: Public domain | W3C validator |