Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cu3addd Structured version   Visualization version   GIF version

Theorem cu3addd 42636
Description: Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.)
Hypotheses
Ref Expression
cu3addd.1 (𝜑𝐴 ∈ ℂ)
cu3addd.2 (𝜑𝐵 ∈ ℂ)
cu3addd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
cu3addd (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))

Proof of Theorem cu3addd
StepHypRef Expression
1 cu3addd.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
2 cu3addd.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
31, 2addcld 11309 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 cu3addd.3 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
53, 4jca 511 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ))
6 binom3 14273 . . . . . . . . . . . 12 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
76a1i 11 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)))))
85, 7mpd 15 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
9 binom3 14273 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
101, 2, 9syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1110oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))))
1211oveq1d 7463 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
138, 12eqtrd 2780 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
141, 2binom2d 14267 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1514oveq1d 7463 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵)↑2) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))
1615oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (3 · (((𝐴 + 𝐵)↑2) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)))
1716oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))))
1817oveq1d 7463 . . . . . . . . 9 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
1913, 18eqtrd 2780 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
201sqcld 14194 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑2) ∈ ℂ)
21 2cnd 12371 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
221, 2mulcld 11310 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
2321, 22mulcld 11310 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2420, 23addcld 11309 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
252sqcld 14194 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
2624, 25, 4adddird 11315 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))
2726oveq2d 7464 . . . . . . . . . 10 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))))
2827oveq2d 7464 . . . . . . . . 9 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))))
2928oveq1d 7463 . . . . . . . 8 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3019, 29eqtrd 2780 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3120, 23, 4adddird 11315 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) = (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)))
3231oveq1d 7463 . . . . . . . . . 10 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)) = ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))
3332oveq2d 7464 . . . . . . . . 9 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))) = (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))))
3433oveq2d 7464 . . . . . . . 8 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))))
3534oveq1d 7463 . . . . . . 7 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3630, 35eqtrd 2780 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
37 3cn 12374 . . . . . . . . . 10 3 ∈ ℂ
3837a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
3920, 4mulcld 11310 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) · 𝐶) ∈ ℂ)
4023, 4mulcld 11310 . . . . . . . . . 10 (𝜑 → ((2 · (𝐴 · 𝐵)) · 𝐶) ∈ ℂ)
4139, 40addcld 11309 . . . . . . . . 9 (𝜑 → (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) ∈ ℂ)
4225, 4mulcld 11310 . . . . . . . . 9 (𝜑 → ((𝐵↑2) · 𝐶) ∈ ℂ)
4338, 41, 42adddid 11314 . . . . . . . 8 (𝜑 → (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))) = ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4443oveq2d 7464 . . . . . . 7 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
4544oveq1d 7463 . . . . . 6 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4636, 45eqtrd 2780 . . . . 5 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4738, 39, 40adddid 11314 . . . . . . . 8 (𝜑 → (3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
4847oveq1d 7463 . . . . . . 7 (𝜑 → ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4948oveq2d 7464 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5049oveq1d 7463 . . . . 5 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5146, 50eqtrd 2780 . . . 4 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5238, 21, 22mulassd 11313 . . . . . . . . . . 11 (𝜑 → ((3 · 2) · (𝐴 · 𝐵)) = (3 · (2 · (𝐴 · 𝐵))))
5352oveq1d 7463 . . . . . . . . . 10 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = ((3 · (2 · (𝐴 · 𝐵))) · 𝐶))
5438, 23, 4mulassd 11313 . . . . . . . . . 10 (𝜑 → ((3 · (2 · (𝐴 · 𝐵))) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5553, 54eqtrd 2780 . . . . . . . . 9 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5655oveq2d 7464 . . . . . . . 8 (𝜑 → ((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
5756oveq1d 7463 . . . . . . 7 (𝜑 → (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
5857oveq2d 7464 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5958eqcomd 2746 . . . . 5 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))))
6059oveq1d 7463 . . . 4 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
6151, 60eqtrd 2780 . . 3 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
624sqcld 14194 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℂ)
631, 2, 62adddird 11315 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) · (𝐶↑2)) = ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2))))
6463oveq2d 7464 . . . . 5 (𝜑 → (3 · ((𝐴 + 𝐵) · (𝐶↑2))) = (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))))
6564oveq1d 7463 . . . 4 (𝜑 → ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)) = ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
6665oveq2d 7464 . . 3 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
6761, 66eqtrd 2780 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
681, 62mulcld 11310 . . . . 5 (𝜑 → (𝐴 · (𝐶↑2)) ∈ ℂ)
692, 62mulcld 11310 . . . . 5 (𝜑 → (𝐵 · (𝐶↑2)) ∈ ℂ)
7038, 68, 69adddid 11314 . . . 4 (𝜑 → (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) = ((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))))
7170oveq1d 7463 . . 3 (𝜑 → ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)) = (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
7271oveq2d 7464 . 2 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
7367, 72eqtrd 2780 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  2c2 12348  3c3 12349  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  3cubeslem3l  42642  3cubeslem3r  42643
  Copyright terms: Public domain W3C validator