Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cu3addd Structured version   Visualization version   GIF version

Theorem cu3addd 40502
Description: Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.)
Hypotheses
Ref Expression
cu3addd.1 (𝜑𝐴 ∈ ℂ)
cu3addd.2 (𝜑𝐵 ∈ ℂ)
cu3addd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
cu3addd (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))

Proof of Theorem cu3addd
StepHypRef Expression
1 cu3addd.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
2 cu3addd.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
31, 2addcld 10994 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 cu3addd.3 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
53, 4jca 512 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ))
6 binom3 13939 . . . . . . . . . . . 12 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
76a1i 11 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)))))
85, 7mpd 15 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
9 binom3 13939 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
101, 2, 9syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1110oveq1d 7290 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))))
1211oveq1d 7290 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
138, 12eqtrd 2778 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
141, 2binom2d 40501 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1514oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵)↑2) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))
1615oveq2d 7291 . . . . . . . . . . 11 (𝜑 → (3 · (((𝐴 + 𝐵)↑2) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)))
1716oveq2d 7291 . . . . . . . . . 10 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))))
1817oveq1d 7290 . . . . . . . . 9 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
1913, 18eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
201sqcld 13862 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑2) ∈ ℂ)
21 2cnd 12051 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
221, 2mulcld 10995 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
2321, 22mulcld 10995 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2420, 23addcld 10994 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
252sqcld 13862 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
2624, 25, 4adddird 11000 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))
2726oveq2d 7291 . . . . . . . . . 10 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))))
2827oveq2d 7291 . . . . . . . . 9 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))))
2928oveq1d 7290 . . . . . . . 8 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3019, 29eqtrd 2778 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3120, 23, 4adddird 11000 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) = (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)))
3231oveq1d 7290 . . . . . . . . . 10 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)) = ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))
3332oveq2d 7291 . . . . . . . . 9 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))) = (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))))
3433oveq2d 7291 . . . . . . . 8 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))))
3534oveq1d 7290 . . . . . . 7 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3630, 35eqtrd 2778 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
37 3cn 12054 . . . . . . . . . 10 3 ∈ ℂ
3837a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
3920, 4mulcld 10995 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) · 𝐶) ∈ ℂ)
4023, 4mulcld 10995 . . . . . . . . . 10 (𝜑 → ((2 · (𝐴 · 𝐵)) · 𝐶) ∈ ℂ)
4139, 40addcld 10994 . . . . . . . . 9 (𝜑 → (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) ∈ ℂ)
4225, 4mulcld 10995 . . . . . . . . 9 (𝜑 → ((𝐵↑2) · 𝐶) ∈ ℂ)
4338, 41, 42adddid 10999 . . . . . . . 8 (𝜑 → (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))) = ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4443oveq2d 7291 . . . . . . 7 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
4544oveq1d 7290 . . . . . 6 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4636, 45eqtrd 2778 . . . . 5 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4738, 39, 40adddid 10999 . . . . . . . 8 (𝜑 → (3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
4847oveq1d 7290 . . . . . . 7 (𝜑 → ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4948oveq2d 7291 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5049oveq1d 7290 . . . . 5 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5146, 50eqtrd 2778 . . . 4 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5238, 21, 22mulassd 10998 . . . . . . . . . . 11 (𝜑 → ((3 · 2) · (𝐴 · 𝐵)) = (3 · (2 · (𝐴 · 𝐵))))
5352oveq1d 7290 . . . . . . . . . 10 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = ((3 · (2 · (𝐴 · 𝐵))) · 𝐶))
5438, 23, 4mulassd 10998 . . . . . . . . . 10 (𝜑 → ((3 · (2 · (𝐴 · 𝐵))) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5553, 54eqtrd 2778 . . . . . . . . 9 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5655oveq2d 7291 . . . . . . . 8 (𝜑 → ((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
5756oveq1d 7290 . . . . . . 7 (𝜑 → (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
5857oveq2d 7291 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5958eqcomd 2744 . . . . 5 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))))
6059oveq1d 7290 . . . 4 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
6151, 60eqtrd 2778 . . 3 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
624sqcld 13862 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℂ)
631, 2, 62adddird 11000 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) · (𝐶↑2)) = ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2))))
6463oveq2d 7291 . . . . 5 (𝜑 → (3 · ((𝐴 + 𝐵) · (𝐶↑2))) = (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))))
6564oveq1d 7290 . . . 4 (𝜑 → ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)) = ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
6665oveq2d 7291 . . 3 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
6761, 66eqtrd 2778 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
681, 62mulcld 10995 . . . . 5 (𝜑 → (𝐴 · (𝐶↑2)) ∈ ℂ)
692, 62mulcld 10995 . . . . 5 (𝜑 → (𝐵 · (𝐶↑2)) ∈ ℂ)
7038, 68, 69adddid 10999 . . . 4 (𝜑 → (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) = ((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))))
7170oveq1d 7290 . . 3 (𝜑 → ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)) = (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
7271oveq2d 7291 . 2 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
7367, 72eqtrd 2778 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869   + caddc 10874   · cmul 10876  2c2 12028  3c3 12029  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  3cubeslem3l  40508  3cubeslem3r  40509
  Copyright terms: Public domain W3C validator