Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cu3addd Structured version   Visualization version   GIF version

Theorem cu3addd 39453
Description: Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.)
Hypotheses
Ref Expression
cu3addd.1 (𝜑𝐴 ∈ ℂ)
cu3addd.2 (𝜑𝐵 ∈ ℂ)
cu3addd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
cu3addd (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))

Proof of Theorem cu3addd
StepHypRef Expression
1 cu3addd.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
2 cu3addd.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
31, 2addcld 10645 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 cu3addd.3 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
53, 4jca 515 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ))
6 binom3 13579 . . . . . . . . . . . 12 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
76a1i 11 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)))))
85, 7mpd 15 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
9 binom3 13579 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
101, 2, 9syl2anc 587 . . . . . . . . . . . 12 (𝜑 → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1110oveq1d 7153 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))))
1211oveq1d 7153 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵)↑3) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
138, 12eqtrd 2859 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
141, 2binom2d 39452 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1514oveq1d 7153 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵)↑2) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))
1615oveq2d 7154 . . . . . . . . . . 11 (𝜑 → (3 · (((𝐴 + 𝐵)↑2) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)))
1716oveq2d 7154 . . . . . . . . . 10 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))))
1817oveq1d 7153 . . . . . . . . 9 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · (((𝐴 + 𝐵)↑2) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
1913, 18eqtrd 2859 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
201sqcld 13502 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑2) ∈ ℂ)
21 2cnd 11701 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
221, 2mulcld 10646 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
2321, 22mulcld 10646 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2420, 23addcld 10645 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
252sqcld 13502 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
2624, 25, 4adddird 10651 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))
2726oveq2d 7154 . . . . . . . . . 10 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶)) = (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))))
2827oveq2d 7154 . . . . . . . . 9 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))))
2928oveq1d 7153 . . . . . . . 8 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐶))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3019, 29eqtrd 2859 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3120, 23, 4adddird 10651 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) = (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)))
3231oveq1d 7153 . . . . . . . . . 10 (𝜑 → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)) = ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))
3332oveq2d 7154 . . . . . . . . 9 (𝜑 → (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶))) = (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))))
3433oveq2d 7154 . . . . . . . 8 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))))
3534oveq1d 7153 . . . . . . 7 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐶) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
3630, 35eqtrd 2859 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
37 3cn 11704 . . . . . . . . . 10 3 ∈ ℂ
3837a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
3920, 4mulcld 10646 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) · 𝐶) ∈ ℂ)
4023, 4mulcld 10646 . . . . . . . . . 10 (𝜑 → ((2 · (𝐴 · 𝐵)) · 𝐶) ∈ ℂ)
4139, 40addcld 10645 . . . . . . . . 9 (𝜑 → (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) ∈ ℂ)
4225, 4mulcld 10646 . . . . . . . . 9 (𝜑 → ((𝐵↑2) · 𝐶) ∈ ℂ)
4338, 41, 42adddid 10650 . . . . . . . 8 (𝜑 → (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶))) = ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4443oveq2d 7154 . . . . . . 7 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
4544oveq1d 7153 . . . . . 6 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (3 · ((((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶)) + ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4636, 45eqtrd 2859 . . . . 5 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
4738, 39, 40adddid 10650 . . . . . . . 8 (𝜑 → (3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
4847oveq1d 7153 . . . . . . 7 (𝜑 → ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
4948oveq2d 7154 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5049oveq1d 7153 . . . . 5 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + ((3 · (((𝐴↑2) · 𝐶) + ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5146, 50eqtrd 2859 . . . 4 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
5238, 21, 22mulassd 10649 . . . . . . . . . . 11 (𝜑 → ((3 · 2) · (𝐴 · 𝐵)) = (3 · (2 · (𝐴 · 𝐵))))
5352oveq1d 7153 . . . . . . . . . 10 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = ((3 · (2 · (𝐴 · 𝐵))) · 𝐶))
5438, 23, 4mulassd 10649 . . . . . . . . . 10 (𝜑 → ((3 · (2 · (𝐴 · 𝐵))) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5553, 54eqtrd 2859 . . . . . . . . 9 (𝜑 → (((3 · 2) · (𝐴 · 𝐵)) · 𝐶) = (3 · ((2 · (𝐴 · 𝐵)) · 𝐶)))
5655oveq2d 7154 . . . . . . . 8 (𝜑 → ((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) = ((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))))
5756oveq1d 7153 . . . . . . 7 (𝜑 → (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶))) = (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶))))
5857oveq2d 7154 . . . . . 6 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))))
5958eqcomd 2830 . . . . 5 (𝜑 → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))))
6059oveq1d 7153 . . . 4 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (3 · ((2 · (𝐴 · 𝐵)) · 𝐶))) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
6151, 60eqtrd 2859 . . 3 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))))
624sqcld 13502 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℂ)
631, 2, 62adddird 10651 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) · (𝐶↑2)) = ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2))))
6463oveq2d 7154 . . . . 5 (𝜑 → (3 · ((𝐴 + 𝐵) · (𝐶↑2))) = (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))))
6564oveq1d 7153 . . . 4 (𝜑 → ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3)) = ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
6665oveq2d 7154 . . 3 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 + 𝐵) · (𝐶↑2))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
6761, 66eqtrd 2859 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
681, 62mulcld 10646 . . . . 5 (𝜑 → (𝐴 · (𝐶↑2)) ∈ ℂ)
692, 62mulcld 10646 . . . . 5 (𝜑 → (𝐵 · (𝐶↑2)) ∈ ℂ)
7038, 68, 69adddid 10650 . . . 4 (𝜑 → (3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) = ((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))))
7170oveq1d 7153 . . 3 (𝜑 → ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3)) = (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))
7271oveq2d 7154 . 2 (𝜑 → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + ((3 · ((𝐴 · (𝐶↑2)) + (𝐵 · (𝐶↑2)))) + (𝐶↑3))) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
7367, 72eqtrd 2859 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  (class class class)co 7138  cc 10520   + caddc 10525   · cmul 10527  2c2 11678  3c3 11679  cexp 13423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-seq 13363  df-exp 13424
This theorem is referenced by:  3cubeslem3l  39459  3cubeslem3r  39460
  Copyright terms: Public domain W3C validator