Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepne Structured version   Visualization version   GIF version

Theorem nosepne 33524
Description: The value of two non-equal surreals at the first place they differ is different. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepne ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepne
StepHypRef Expression
1 sltso 33520 . . . 4 <s Or No
2 sotrine 33306 . . . 4 (( <s Or No ∧ (𝐴 No 𝐵 No )) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
31, 2mpan 690 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
4 nosepnelem 33523 . . . . 5 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
543expia 1122 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
6 nosepnelem 33523 . . . . . . 7 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
7 necom 2987 . . . . . . . . . . . 12 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐵𝑥) ≠ (𝐴𝑥))
87rabbii 3374 . . . . . . . . . . 11 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
98inteqi 4840 . . . . . . . . . 10 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
109fveq2i 6677 . . . . . . . . 9 (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})
119fveq2i 6677 . . . . . . . . 9 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})
1210, 11neeq12i 3000 . . . . . . . 8 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
13 necom 2987 . . . . . . . 8 ((𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
1412, 13bitri 278 . . . . . . 7 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
156, 14sylibr 237 . . . . . 6 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
16153expia 1122 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
1716ancoms 462 . . . 4 ((𝐴 No 𝐵 No ) → (𝐵 <s 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
185, 17jaod 858 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐴) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
193, 18sylbid 243 . 2 ((𝐴 No 𝐵 No ) → (𝐴𝐵 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
20193impia 1118 1 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088  wcel 2114  wne 2934  {crab 3057   cint 4836   class class class wbr 5030   Or wor 5441  Oncon0 6172  cfv 6339   No csur 33484   <s cslt 33485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-1o 8131  df-2o 8132  df-no 33487  df-slt 33488
This theorem is referenced by:  nosep1o  33525  nosep2o  33526  nosepssdm  33530  noresle  33541  noetasuplem4  33580  noetainflem4  33584
  Copyright terms: Public domain W3C validator