MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepne Structured version   Visualization version   GIF version

Theorem nosepne 27743
Description: The value of two non-equal surreals at the first place they differ is different. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepne ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepne
StepHypRef Expression
1 sltso 27739 . . . 4 <s Or No
2 sotrine 5647 . . . 4 (( <s Or No ∧ (𝐴 No 𝐵 No )) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
31, 2mpan 689 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
4 nosepnelem 27742 . . . . 5 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
543expia 1121 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
6 nosepnelem 27742 . . . . . . 7 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
7 necom 3000 . . . . . . . . . . . 12 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐵𝑥) ≠ (𝐴𝑥))
87rabbii 3449 . . . . . . . . . . 11 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
98inteqi 4974 . . . . . . . . . 10 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
109fveq2i 6923 . . . . . . . . 9 (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})
119fveq2i 6923 . . . . . . . . 9 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})
1210, 11neeq12i 3013 . . . . . . . 8 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
13 necom 3000 . . . . . . . 8 ((𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
1412, 13bitri 275 . . . . . . 7 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
156, 14sylibr 234 . . . . . 6 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
16153expia 1121 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
1716ancoms 458 . . . 4 ((𝐴 No 𝐵 No ) → (𝐵 <s 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
185, 17jaod 858 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐴) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
193, 18sylbid 240 . 2 ((𝐴 No 𝐵 No ) → (𝐴𝐵 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
20193impia 1117 1 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946  {crab 3443   cint 4970   class class class wbr 5166   Or wor 5606  Oncon0 6395  cfv 6573   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706
This theorem is referenced by:  nosep1o  27744  nosep2o  27745  nosepssdm  27749  noresle  27760  noetasuplem4  27799  noetainflem4  27803
  Copyright terms: Public domain W3C validator