MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglmhm Structured version   Visualization version   GIF version

Theorem srglmhm 20152
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 20237. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b ๐ต = (Baseโ€˜๐‘…)
srglmhm.t ยท = (.rโ€˜๐‘…)
Assertion
Ref Expression
srglmhm ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…))
Distinct variable groups:   ๐‘ฅ,๐ต   ๐‘ฅ,๐‘…   ๐‘ฅ,๐‘‹   ๐‘ฅ, ยท

Proof of Theorem srglmhm
Dummy variables ๐‘Ž ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 20121 . . . 4 (๐‘… โˆˆ SRing โ†’ ๐‘… โˆˆ Mnd)
21, 1jca 511 . . 3 (๐‘… โˆˆ SRing โ†’ (๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd))
32adantr 480 . 2 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd))
4 srglmhm.b . . . . . 6 ๐ต = (Baseโ€˜๐‘…)
5 srglmhm.t . . . . . 6 ยท = (.rโ€˜๐‘…)
64, 5srgcl 20124 . . . . 5 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘ฅ) โˆˆ ๐ต)
763expa 1116 . . . 4 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘ฅ) โˆˆ ๐ต)
87fmpttd 7119 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต)
9 3anass 1093 . . . . . . 7 ((๐‘‹ โˆˆ ๐ต โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†” (๐‘‹ โˆˆ ๐ต โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)))
10 eqid 2727 . . . . . . . 8 (+gโ€˜๐‘…) = (+gโ€˜๐‘…)
114, 10, 5srgdi 20128 . . . . . . 7 ((๐‘… โˆˆ SRing โˆง (๐‘‹ โˆˆ ๐ต โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
129, 11sylan2br 594 . . . . . 6 ((๐‘… โˆˆ SRing โˆง (๐‘‹ โˆˆ ๐ต โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต))) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
1312anassrs 467 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
144, 10srgacl 20136 . . . . . . . 8 ((๐‘… โˆˆ SRing โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
15143expb 1118 . . . . . . 7 ((๐‘… โˆˆ SRing โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
1615adantlr 714 . . . . . 6 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
17 oveq2 7422 . . . . . . 7 (๐‘ฅ = (๐‘Ž(+gโ€˜๐‘…)๐‘) โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)))
18 eqid 2727 . . . . . . 7 (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) = (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))
19 ovex 7447 . . . . . . 7 (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) โˆˆ V
2017, 18, 19fvmpt 6999 . . . . . 6 ((๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)))
2116, 20syl 17 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)))
22 oveq2 7422 . . . . . . . 8 (๐‘ฅ = ๐‘Ž โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท ๐‘Ž))
23 ovex 7447 . . . . . . . 8 (๐‘‹ ยท ๐‘Ž) โˆˆ V
2422, 18, 23fvmpt 6999 . . . . . . 7 (๐‘Ž โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž) = (๐‘‹ ยท ๐‘Ž))
25 oveq2 7422 . . . . . . . 8 (๐‘ฅ = ๐‘ โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท ๐‘))
26 ovex 7447 . . . . . . . 8 (๐‘‹ ยท ๐‘) โˆˆ V
2725, 18, 26fvmpt 6999 . . . . . . 7 (๐‘ โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘) = (๐‘‹ ยท ๐‘))
2824, 27oveqan12d 7433 . . . . . 6 ((๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
2928adantl 481 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
3013, 21, 293eqtr4d 2777 . . . 4 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)))
3130ralrimivva 3195 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)))
32 eqid 2727 . . . . . . 7 (0gโ€˜๐‘…) = (0gโ€˜๐‘…)
334, 32srg0cl 20131 . . . . . 6 (๐‘… โˆˆ SRing โ†’ (0gโ€˜๐‘…) โˆˆ ๐ต)
3433adantr 480 . . . . 5 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (0gโ€˜๐‘…) โˆˆ ๐ต)
35 oveq2 7422 . . . . . 6 (๐‘ฅ = (0gโ€˜๐‘…) โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท (0gโ€˜๐‘…)))
36 ovex 7447 . . . . . 6 (๐‘‹ ยท (0gโ€˜๐‘…)) โˆˆ V
3735, 18, 36fvmpt 6999 . . . . 5 ((0gโ€˜๐‘…) โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (๐‘‹ ยท (0gโ€˜๐‘…)))
3834, 37syl 17 . . . 4 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (๐‘‹ ยท (0gโ€˜๐‘…)))
394, 5, 32srgrz 20138 . . . 4 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘‹ ยท (0gโ€˜๐‘…)) = (0gโ€˜๐‘…))
4038, 39eqtrd 2767 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…))
418, 31, 403jca 1126 . 2 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต โˆง โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…)))
424, 4, 10, 10, 32, 32ismhm 18733 . 2 ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…) โ†” ((๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต โˆง โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…))))
433, 41, 42sylanbrc 582 1 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  โˆ€wral 3056   โ†ฆ cmpt 5225  โŸถwf 6538  โ€˜cfv 6542  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  .rcmulr 17225  0gc0g 17412  Mndcmnd 18685   MndHom cmhm 18729  SRingcsrg 20117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-plusg 17237  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-cmn 19728  df-mgp 20066  df-srg 20118
This theorem is referenced by:  sgsummulcl  20155
  Copyright terms: Public domain W3C validator