MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglmhm Structured version   Visualization version   GIF version

Theorem srglmhm 20186
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 20277. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srglmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 20155 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 511 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 480 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . 6 · = (.r𝑅)
64, 5srgcl 20158 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1118 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 7110 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 1094 . . . . . . 7 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
10 eqid 2736 . . . . . . . 8 (+g𝑅) = (+g𝑅)
114, 10, 5srgdi 20162 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
129, 11sylan2br 595 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1312anassrs 467 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
144, 10srgacl 20170 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
15143expb 1120 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1615adantlr 715 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
17 oveq2 7418 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g𝑅)𝑏)))
18 eqid 2736 . . . . . . 7 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
19 ovex 7443 . . . . . . 7 (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ V
2017, 18, 19fvmpt 6991 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
2116, 20syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
22 oveq2 7418 . . . . . . . 8 (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎))
23 ovex 7443 . . . . . . . 8 (𝑋 · 𝑎) ∈ V
2422, 18, 23fvmpt 6991 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎))
25 oveq2 7418 . . . . . . . 8 (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏))
26 ovex 7443 . . . . . . . 8 (𝑋 · 𝑏) ∈ V
2725, 18, 26fvmpt 6991 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏))
2824, 27oveqan12d 7429 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
2928adantl 481 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
3013, 21, 293eqtr4d 2781 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
3130ralrimivva 3188 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
32 eqid 2736 . . . . . . 7 (0g𝑅) = (0g𝑅)
334, 32srg0cl 20165 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3433adantr 480 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
35 oveq2 7418 . . . . . 6 (𝑥 = (0g𝑅) → (𝑋 · 𝑥) = (𝑋 · (0g𝑅)))
36 ovex 7443 . . . . . 6 (𝑋 · (0g𝑅)) ∈ V
3735, 18, 36fvmpt 6991 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
3834, 37syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
394, 5, 32srgrz 20172 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
4038, 39eqtrd 2771 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))
418, 31, 403jca 1128 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅)))
424, 4, 10, 10, 32, 32ismhm 18768 . 2 ((𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))))
433, 41, 42sylanbrc 583 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717   MndHom cmhm 18764  SRingcsrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-cmn 19768  df-mgp 20106  df-srg 20152
This theorem is referenced by:  sgsummulcl  20189
  Copyright terms: Public domain W3C validator