MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglmhm Structured version   Visualization version   GIF version

Theorem srglmhm 20248
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 20335. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srglmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 20217 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 511 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 480 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . 6 · = (.r𝑅)
64, 5srgcl 20220 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1118 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 7149 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 1095 . . . . . . 7 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
10 eqid 2740 . . . . . . . 8 (+g𝑅) = (+g𝑅)
114, 10, 5srgdi 20224 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
129, 11sylan2br 594 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1312anassrs 467 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
144, 10srgacl 20232 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
15143expb 1120 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1615adantlr 714 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
17 oveq2 7456 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g𝑅)𝑏)))
18 eqid 2740 . . . . . . 7 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
19 ovex 7481 . . . . . . 7 (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ V
2017, 18, 19fvmpt 7029 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
2116, 20syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
22 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎))
23 ovex 7481 . . . . . . . 8 (𝑋 · 𝑎) ∈ V
2422, 18, 23fvmpt 7029 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎))
25 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏))
26 ovex 7481 . . . . . . . 8 (𝑋 · 𝑏) ∈ V
2725, 18, 26fvmpt 7029 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏))
2824, 27oveqan12d 7467 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
2928adantl 481 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
3013, 21, 293eqtr4d 2790 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
3130ralrimivva 3208 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
32 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
334, 32srg0cl 20227 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3433adantr 480 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
35 oveq2 7456 . . . . . 6 (𝑥 = (0g𝑅) → (𝑋 · 𝑥) = (𝑋 · (0g𝑅)))
36 ovex 7481 . . . . . 6 (𝑋 · (0g𝑅)) ∈ V
3735, 18, 36fvmpt 7029 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
3834, 37syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
394, 5, 32srgrz 20234 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
4038, 39eqtrd 2780 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))
418, 31, 403jca 1128 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅)))
424, 4, 10, 10, 32, 32ismhm 18820 . 2 ((𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))))
433, 41, 42sylanbrc 582 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Mndcmnd 18772   MndHom cmhm 18816  SRingcsrg 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-cmn 19824  df-mgp 20162  df-srg 20214
This theorem is referenced by:  sgsummulcl  20251
  Copyright terms: Public domain W3C validator