Step | Hyp | Ref
| Expression |
1 | | srgmnd 19745 |
. . . 4
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
2 | 1, 1 | jca 512 |
. . 3
⊢ (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
3 | 2 | adantr 481 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
4 | | srglmhm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
5 | | srglmhm.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
6 | 4, 5 | srgcl 19748 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1117 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
8 | 7 | fmpttd 6989 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
9 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
11 | 4, 10, 5 | srgdi 19752 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
12 | 9, 11 | sylan2br 595 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
13 | 12 | anassrs 468 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
14 | 4, 10 | srgacl 19760 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
15 | 14 | 3expb 1119 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
16 | 15 | adantlr 712 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
17 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g‘𝑅)𝑏))) |
18 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) |
19 | | ovex 7308 |
. . . . . . 7
⊢ (𝑋 · (𝑎(+g‘𝑅)𝑏)) ∈ V |
20 | 17, 18, 19 | fvmpt 6875 |
. . . . . 6
⊢ ((𝑎(+g‘𝑅)𝑏) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (𝑋 · (𝑎(+g‘𝑅)𝑏))) |
21 | 16, 20 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (𝑋 · (𝑎(+g‘𝑅)𝑏))) |
22 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎)) |
23 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑋 · 𝑎) ∈ V |
24 | 22, 18, 23 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎)) |
25 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏)) |
26 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑋 · 𝑏) ∈ V |
27 | 25, 18, 26 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏)) |
28 | 24, 27 | oveqan12d 7294 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
29 | 28 | adantl 482 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
30 | 13, 21, 29 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏))) |
31 | 30 | ralrimivva 3123 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏))) |
32 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
33 | 4, 32 | srg0cl 19755 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(0g‘𝑅)
∈ 𝐵) |
34 | 33 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (0g‘𝑅) ∈ 𝐵) |
35 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑅) → (𝑋 · 𝑥) = (𝑋 ·
(0g‘𝑅))) |
36 | | ovex 7308 |
. . . . . 6
⊢ (𝑋 ·
(0g‘𝑅))
∈ V |
37 | 35, 18, 36 | fvmpt 6875 |
. . . . 5
⊢
((0g‘𝑅) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (𝑋 ·
(0g‘𝑅))) |
38 | 34, 37 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (𝑋 ·
(0g‘𝑅))) |
39 | 4, 5, 32 | srgrz 19762 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
40 | 38, 39 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅)) |
41 | 8, 31, 40 | 3jca 1127 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅))) |
42 | 4, 4, 10, 10, 32, 32 | ismhm 18432 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅)))) |
43 | 3, 41, 42 | sylanbrc 583 |
1
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |