MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgfcl Structured version   Visualization version   GIF version

Theorem srgfcl 20223
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
srgfcl.b 𝐵 = (Base‘𝑅)
srgfcl.t · = (.r𝑅)
Assertion
Ref Expression
srgfcl ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem srgfcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵))
2 srgfcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 srgfcl.t . . . . . . . 8 · = (.r𝑅)
42, 3srgcl 20220 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
543expb 1120 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
65ralrimivva 3208 . . . . 5 (𝑅 ∈ SRing → ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
7 fveq2 6920 . . . . . . . 8 (𝑐 = ⟨𝑎, 𝑏⟩ → ( ·𝑐) = ( · ‘⟨𝑎, 𝑏⟩))
87eleq1d 2829 . . . . . . 7 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ ( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵))
9 df-ov 7451 . . . . . . . . 9 (𝑎 · 𝑏) = ( · ‘⟨𝑎, 𝑏⟩)
109eqcomi 2749 . . . . . . . 8 ( · ‘⟨𝑎, 𝑏⟩) = (𝑎 · 𝑏)
1110eleq1i 2835 . . . . . . 7 (( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)
128, 11bitrdi 287 . . . . . 6 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵))
1312ralxp 5866 . . . . 5 (∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵 ↔ ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
146, 13sylibr 234 . . . 4 (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
1514adantr 480 . . 3 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
16 fnfvrnss 7155 . . 3 (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵) → ran ·𝐵)
171, 15, 16syl2anc 583 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran ·𝐵)
18 df-f 6577 . 2 ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran ·𝐵))
191, 17, 18sylanbrc 582 1 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cop 4654   × cxp 5698  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  SRingcsrg 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mgp 20162  df-srg 20214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator