MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgfcl Structured version   Visualization version   GIF version

Theorem srgfcl 20161
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
srgfcl.b 𝐵 = (Base‘𝑅)
srgfcl.t · = (.r𝑅)
Assertion
Ref Expression
srgfcl ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem srgfcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵))
2 srgfcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 srgfcl.t . . . . . . . 8 · = (.r𝑅)
42, 3srgcl 20158 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
543expb 1120 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
65ralrimivva 3188 . . . . 5 (𝑅 ∈ SRing → ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
7 fveq2 6881 . . . . . . . 8 (𝑐 = ⟨𝑎, 𝑏⟩ → ( ·𝑐) = ( · ‘⟨𝑎, 𝑏⟩))
87eleq1d 2820 . . . . . . 7 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ ( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵))
9 df-ov 7413 . . . . . . . . 9 (𝑎 · 𝑏) = ( · ‘⟨𝑎, 𝑏⟩)
109eqcomi 2745 . . . . . . . 8 ( · ‘⟨𝑎, 𝑏⟩) = (𝑎 · 𝑏)
1110eleq1i 2826 . . . . . . 7 (( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)
128, 11bitrdi 287 . . . . . 6 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵))
1312ralxp 5826 . . . . 5 (∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵 ↔ ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
146, 13sylibr 234 . . . 4 (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
1514adantr 480 . . 3 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
16 fnfvrnss 7116 . . 3 (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵) → ran ·𝐵)
171, 15, 16syl2anc 584 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran ·𝐵)
18 df-f 6540 . 2 ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran ·𝐵))
191, 17, 18sylanbrc 583 1 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931  cop 4612   × cxp 5657  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  SRingcsrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mgp 20106  df-srg 20152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator