Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgfcl | Structured version Visualization version GIF version |
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
srgfcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srgfcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
srgfcl | ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵)) | |
2 | srgfcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srgfcl.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
4 | 2, 3 | srgcl 19746 | . . . . . . 7 ⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 · 𝑏) ∈ 𝐵) |
5 | 4 | 3expb 1119 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑏) ∈ 𝐵) |
6 | 5 | ralrimivva 3117 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
7 | fveq2 6771 | . . . . . . . 8 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → ( · ‘𝑐) = ( · ‘〈𝑎, 𝑏〉)) | |
8 | 7 | eleq1d 2825 | . . . . . . 7 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ ( · ‘〈𝑎, 𝑏〉) ∈ 𝐵)) |
9 | df-ov 7274 | . . . . . . . . 9 ⊢ (𝑎 · 𝑏) = ( · ‘〈𝑎, 𝑏〉) | |
10 | 9 | eqcomi 2749 | . . . . . . . 8 ⊢ ( · ‘〈𝑎, 𝑏〉) = (𝑎 · 𝑏) |
11 | 10 | eleq1i 2831 | . . . . . . 7 ⊢ (( · ‘〈𝑎, 𝑏〉) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵) |
12 | 8, 11 | bitrdi 287 | . . . . . 6 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)) |
13 | 12 | ralxp 5749 | . . . . 5 ⊢ (∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
14 | 6, 13 | sylibr 233 | . . . 4 ⊢ (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
16 | fnfvrnss 6991 | . . 3 ⊢ (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) → ran · ⊆ 𝐵) | |
17 | 1, 15, 16 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran · ⊆ 𝐵) |
18 | df-f 6436 | . 2 ⊢ ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran · ⊆ 𝐵)) | |
19 | 1, 17, 18 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 〈cop 4573 × cxp 5588 ran crn 5591 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 .rcmulr 16961 SRingcsrg 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mgp 19719 df-srg 19740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |