Proof of Theorem srgbinomlem
Step | Hyp | Ref
| Expression |
1 | | srgbinom.s |
. . . 4
⊢ 𝑆 = (Base‘𝑅) |
2 | | srgbinom.m |
. . . 4
⊢ × =
(.r‘𝑅) |
3 | | srgbinom.t |
. . . 4
⊢ · =
(.g‘𝑅) |
4 | | srgbinom.a |
. . . 4
⊢ + =
(+g‘𝑅) |
5 | | srgbinom.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑅) |
6 | | srgbinom.e |
. . . 4
⊢ ↑ =
(.g‘𝐺) |
7 | | srgbinomlem.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ SRing) |
8 | | srgbinomlem.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
9 | | srgbinomlem.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
10 | | srgbinomlem.c |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
11 | | srgbinomlem.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
12 | | srgbinomlem.i |
. . . 4
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | srgbinomlem3 19693 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | srgbinomlem4 19694 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
15 | 13, 14 | oveq12d 7273 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
16 | 5 | srgmgp 19661 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
17 | 7, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
18 | | srgmnd 19660 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
19 | 7, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
20 | 1, 4 | mndcl 18308 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 + 𝐵) ∈ 𝑆) |
21 | 19, 8, 9, 20 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑆) |
22 | 17, 11, 21 | 3jca 1126 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆)) |
23 | 22 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆)) |
24 | 5, 1 | mgpbas 19641 |
. . . . 5
⊢ 𝑆 = (Base‘𝐺) |
25 | 5, 2 | mgpplusg 19639 |
. . . . 5
⊢ × =
(+g‘𝐺) |
26 | 24, 6, 25 | mulgnn0p1 18630 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵))) |
27 | 23, 26 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵))) |
28 | 24, 6 | mulgnn0cl 18635 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ (𝐴 + 𝐵) ∈ 𝑆) → (𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆) |
29 | 17, 11, 21, 28 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆) |
30 | 29, 8, 9 | 3jca 1126 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
31 | 7, 30 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆))) |
32 | 31 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆))) |
33 | 1, 4, 2 | srgdi 19667 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
34 | 32, 33 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
35 | 27, 34 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
36 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
37 | | bcpasc 13963 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘)) |
38 | 11, 36, 37 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘)) |
39 | 38 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
40 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd) |
41 | | bccl 13964 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
42 | 11, 36, 41 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈
ℕ0) |
43 | 36 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ) |
44 | | peano2zm 12293 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
45 | 43, 44 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ) |
46 | | bccl 13964 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
47 | 11, 45, 46 | syl2an2r 681 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
48 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing) |
49 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
50 | | fznn0sub 13217 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
51 | 50 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
52 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
53 | 24, 6 | mulgnn0cl 18635 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
54 | 49, 51, 52, 53 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
55 | | elfznn0 13278 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
56 | 55 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
57 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
58 | 24, 6 | mulgnn0cl 18635 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0
∧ 𝐵 ∈ 𝑆) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
59 | 49, 56, 57, 58 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
60 | 1, 2 | srgcl 19663 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆 ∧ (𝑘 ↑ 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) |
61 | 48, 54, 59, 60 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) |
62 | 1, 3, 4 | mulgnn0dir 18648 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
63 | 40, 42, 47, 61, 62 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
64 | 39, 63 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
65 | 64 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
66 | 65 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
67 | | srgcmn 19659 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
68 | 7, 67 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
69 | | fzfid 13621 |
. . . . 5
⊢ (𝜑 → (0...(𝑁 + 1)) ∈ Fin) |
70 | 1, 3 | mulgnn0cl 18635 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (𝑁C𝑘) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
71 | 40, 42, 61, 70 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
72 | 36, 44 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
73 | 11, 72, 46 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
74 | 1, 3 | mulgnn0cl 18635 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
75 | 40, 73, 61, 74 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
76 | | eqid 2738 |
. . . . 5
⊢ (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
77 | | eqid 2738 |
. . . . 5
⊢ (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
78 | 1, 4, 68, 69, 71, 75, 76, 77 | gsummptfidmadd 19441 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
79 | 66, 78 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
80 | 79 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
81 | 15, 35, 80 | 3eqtr4d 2788 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |