Proof of Theorem srgbinomlem
| Step | Hyp | Ref
| Expression |
| 1 | | srgbinom.s |
. . . 4
⊢ 𝑆 = (Base‘𝑅) |
| 2 | | srgbinom.m |
. . . 4
⊢ × =
(.r‘𝑅) |
| 3 | | srgbinom.t |
. . . 4
⊢ · =
(.g‘𝑅) |
| 4 | | srgbinom.a |
. . . 4
⊢ + =
(+g‘𝑅) |
| 5 | | srgbinom.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑅) |
| 6 | | srgbinom.e |
. . . 4
⊢ ↑ =
(.g‘𝐺) |
| 7 | | srgbinomlem.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 8 | | srgbinomlem.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 9 | | srgbinomlem.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 10 | | srgbinomlem.c |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 11 | | srgbinomlem.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 12 | | srgbinomlem.i |
. . . 4
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | srgbinomlem3 20226 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | srgbinomlem4 20227 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 15 | 13, 14 | oveq12d 7450 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 16 | 5 | srgmgp 20189 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 17 | 7, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 18 | | srgmnd 20188 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 19 | 7, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 20 | 1, 4 | mndcl 18756 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 + 𝐵) ∈ 𝑆) |
| 21 | 19, 8, 9, 20 | syl3anc 1372 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑆) |
| 22 | 17, 11, 21 | 3jca 1128 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆)) |
| 23 | 22 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆)) |
| 24 | 5, 1 | mgpbas 20143 |
. . . . 5
⊢ 𝑆 = (Base‘𝐺) |
| 25 | 5, 2 | mgpplusg 20142 |
. . . . 5
⊢ × =
(+g‘𝐺) |
| 26 | 24, 6, 25 | mulgnn0p1 19104 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵))) |
| 27 | 23, 26 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵))) |
| 28 | 24, 6, 17, 11, 21 | mulgnn0cld 19114 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆) |
| 29 | 28, 8, 9 | 3jca 1128 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 30 | 7, 29 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆))) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆))) |
| 32 | 1, 4, 2 | srgdi 20195 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ (𝐴 + 𝐵)) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
| 33 | 31, 32 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
| 34 | 27, 33 | eqtrd 2776 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = (((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) + ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵))) |
| 35 | | elfzelz 13565 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
| 36 | | bcpasc 14361 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘)) |
| 37 | 11, 35, 36 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘)) |
| 38 | 37 | oveq1d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 39 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd) |
| 40 | | bccl 14362 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 41 | 11, 35, 40 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈
ℕ0) |
| 42 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ) |
| 43 | | peano2zm 12662 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ) |
| 45 | | bccl 14362 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 46 | 11, 44, 45 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 47 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing) |
| 48 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
| 49 | | fznn0sub 13597 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 50 | 49 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 51 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
| 52 | 24, 6, 48, 50, 51 | mulgnn0cld 19114 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
| 53 | | elfznn0 13661 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
| 54 | 53 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
| 55 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
| 56 | 24, 6, 48, 54, 55 | mulgnn0cld 19114 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
| 57 | 1, 2 | srgcl 20191 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆 ∧ (𝑘 ↑ 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) |
| 58 | 47, 52, 56, 57 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆) |
| 59 | 1, 3, 4 | mulgnn0dir 19123 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
| 60 | 39, 41, 46, 58, 59 | syl13anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
| 61 | 38, 60 | eqtr3d 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
| 62 | 61 | mpteq2dva 5241 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 63 | 62 | oveq2d 7448 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 64 | | srgcmn 20187 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
| 65 | 7, 64 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 66 | | fzfid 14015 |
. . . . 5
⊢ (𝜑 → (0...(𝑁 + 1)) ∈ Fin) |
| 67 | 1, 3, 39, 41, 58 | mulgnn0cld 19114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 68 | 35, 43 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
| 69 | 11, 68, 45 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 70 | 1, 3, 39, 69, 58 | mulgnn0cld 19114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 71 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 72 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 73 | 1, 4, 65, 66, 67, 70, 71, 72 | gsummptfidmadd 19944 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 74 | 63, 73 | eqtrd 2776 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 75 | 74 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 76 | 15, 34, 75 | 3eqtr4d 2786 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |