MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem Structured version   Visualization version   GIF version

Theorem srgbinomlem 19961
Description: Lemma for srgbinom 19962. Inductive step, analogous to binomlem 15714. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘   + ,𝑘
Allowed substitution hints:   𝜓(𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem
StepHypRef Expression
1 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
2 srgbinom.m . . . 4 × = (.r𝑅)
3 srgbinom.t . . . 4 · = (.g𝑅)
4 srgbinom.a . . . 4 + = (+g𝑅)
5 srgbinom.g . . . 4 𝐺 = (mulGrp‘𝑅)
6 srgbinom.e . . . 4 = (.g𝐺)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 srgbinomlem.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
11 srgbinomlem.n . . . 4 (𝜑𝑁 ∈ ℕ0)
12 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem3 19959 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem4 19960 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1513, 14oveq12d 7375 . 2 ((𝜑𝜓) → (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
165srgmgp 19922 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
177, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
18 srgmnd 19921 . . . . . . . 8 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
197, 18syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
201, 4mndcl 18564 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
2119, 8, 9, 20syl3anc 1371 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ 𝑆)
2217, 11, 213jca 1128 . . . . 5 (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
2322adantr 481 . . . 4 ((𝜑𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
245, 1mgpbas 19902 . . . . 5 𝑆 = (Base‘𝐺)
255, 2mgpplusg 19900 . . . . 5 × = (+g𝐺)
2624, 6, 25mulgnn0p1 18887 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2723, 26syl 17 . . 3 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2824, 6, 17, 11, 21mulgnn0cld 18897 . . . . . . 7 (𝜑 → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
2928, 8, 93jca 1128 . . . . . 6 (𝜑 → ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆))
307, 29jca 512 . . . . 5 (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
3130adantr 481 . . . 4 ((𝜑𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
321, 4, 2srgdi 19928 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3331, 32syl 17 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3427, 33eqtrd 2776 . 2 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
35 elfzelz 13441 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
36 bcpasc 14221 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3711, 35, 36syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3837oveq1d 7372 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3919adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd)
40 bccl 14222 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
4111, 35, 40syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
4235adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
43 peano2zm 12546 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
45 bccl 14222 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
4611, 44, 45syl2an2r 683 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
477adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing)
4817adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd)
49 fznn0sub 13473 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
5049adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
518adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐴𝑆)
5224, 6, 48, 50, 51mulgnn0cld 18897 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
53 elfznn0 13534 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
5453adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
559adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵𝑆)
5624, 6, 48, 54, 55mulgnn0cld 18897 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
571, 2srgcl 19924 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
5847, 52, 56, 57syl3anc 1371 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
591, 3, 4mulgnn0dir 18906 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6039, 41, 46, 58, 59syl13anc 1372 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6138, 60eqtr3d 2778 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6261mpteq2dva 5205 . . . . 5 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
6362oveq2d 7373 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
64 srgcmn 19920 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
657, 64syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
66 fzfid 13878 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
671, 3, 39, 41, 58mulgnn0cld 18897 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
6835, 43syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
6911, 68, 45syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
701, 3, 39, 69, 58mulgnn0cld 18897 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
71 eqid 2736 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
72 eqid 2736 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
731, 4, 65, 66, 67, 70, 71, 72gsummptfidmadd 19702 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7463, 73eqtrd 2776 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7574adantr 481 . 2 ((𝜑𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7615, 34, 753eqtr4d 2786 1 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cmpt 5188  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  0cn0 12413  cz 12499  ...cfz 13424  Ccbc 14202  Basecbs 17083  +gcplusg 17133  .rcmulr 17134   Σg cgsu 17322  Mndcmnd 18556  .gcmg 18872  CMndccmn 19562  mulGrpcmgp 19896  SRingcsrg 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-fac 14174  df-bc 14203  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-srg 19918
This theorem is referenced by:  srgbinom  19962
  Copyright terms: Public domain W3C validator