MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem Structured version   Visualization version   GIF version

Theorem srgbinomlem 20257
Description: Lemma for srgbinom 20258. Inductive step, analogous to binomlem 15877. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘   + ,𝑘
Allowed substitution hints:   𝜓(𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem
StepHypRef Expression
1 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
2 srgbinom.m . . . 4 × = (.r𝑅)
3 srgbinom.t . . . 4 · = (.g𝑅)
4 srgbinom.a . . . 4 + = (+g𝑅)
5 srgbinom.g . . . 4 𝐺 = (mulGrp‘𝑅)
6 srgbinom.e . . . 4 = (.g𝐺)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 srgbinomlem.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
11 srgbinomlem.n . . . 4 (𝜑𝑁 ∈ ℕ0)
12 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem3 20255 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem4 20256 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1513, 14oveq12d 7466 . 2 ((𝜑𝜓) → (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
165srgmgp 20218 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
177, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
18 srgmnd 20217 . . . . . . . 8 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
197, 18syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
201, 4mndcl 18780 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
2119, 8, 9, 20syl3anc 1371 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ 𝑆)
2217, 11, 213jca 1128 . . . . 5 (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
2322adantr 480 . . . 4 ((𝜑𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
245, 1mgpbas 20167 . . . . 5 𝑆 = (Base‘𝐺)
255, 2mgpplusg 20165 . . . . 5 × = (+g𝐺)
2624, 6, 25mulgnn0p1 19125 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2723, 26syl 17 . . 3 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2824, 6, 17, 11, 21mulgnn0cld 19135 . . . . . . 7 (𝜑 → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
2928, 8, 93jca 1128 . . . . . 6 (𝜑 → ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆))
307, 29jca 511 . . . . 5 (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
3130adantr 480 . . . 4 ((𝜑𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
321, 4, 2srgdi 20224 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3331, 32syl 17 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3427, 33eqtrd 2780 . 2 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
35 elfzelz 13584 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
36 bcpasc 14370 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3711, 35, 36syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3837oveq1d 7463 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3919adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd)
40 bccl 14371 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
4111, 35, 40syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
4235adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
43 peano2zm 12686 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
45 bccl 14371 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
4611, 44, 45syl2an2r 684 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
477adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing)
4817adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd)
49 fznn0sub 13616 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
5049adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
518adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐴𝑆)
5224, 6, 48, 50, 51mulgnn0cld 19135 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
53 elfznn0 13677 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
559adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵𝑆)
5624, 6, 48, 54, 55mulgnn0cld 19135 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
571, 2srgcl 20220 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
5847, 52, 56, 57syl3anc 1371 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
591, 3, 4mulgnn0dir 19144 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6039, 41, 46, 58, 59syl13anc 1372 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6138, 60eqtr3d 2782 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6261mpteq2dva 5266 . . . . 5 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
6362oveq2d 7464 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
64 srgcmn 20216 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
657, 64syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
66 fzfid 14024 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
671, 3, 39, 41, 58mulgnn0cld 19135 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
6835, 43syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
6911, 68, 45syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
701, 3, 39, 69, 58mulgnn0cld 19135 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
71 eqid 2740 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
72 eqid 2740 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
731, 4, 65, 66, 67, 70, 71, 72gsummptfidmadd 19967 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7463, 73eqtrd 2780 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7574adantr 480 . 2 ((𝜑𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7615, 34, 753eqtr4d 2790 1 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  0cn0 12553  cz 12639  ...cfz 13567  Ccbc 14351  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  SRingcsrg 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-fac 14323  df-bc 14352  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-mgp 20162  df-ur 20209  df-srg 20214
This theorem is referenced by:  srgbinom  20258
  Copyright terms: Public domain W3C validator