MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem Structured version   Visualization version   GIF version

Theorem srgbinomlem 20139
Description: Lemma for srgbinom 20140. Inductive step, analogous to binomlem 15795. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘   + ,𝑘
Allowed substitution hints:   𝜓(𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem
StepHypRef Expression
1 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
2 srgbinom.m . . . 4 × = (.r𝑅)
3 srgbinom.t . . . 4 · = (.g𝑅)
4 srgbinom.a . . . 4 + = (+g𝑅)
5 srgbinom.g . . . 4 𝐺 = (mulGrp‘𝑅)
6 srgbinom.e . . . 4 = (.g𝐺)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 srgbinomlem.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
11 srgbinomlem.n . . . 4 (𝜑𝑁 ∈ ℕ0)
12 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem3 20137 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem4 20138 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1513, 14oveq12d 7405 . 2 ((𝜑𝜓) → (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
165srgmgp 20100 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
177, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
18 srgmnd 20099 . . . . . . . 8 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
197, 18syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
201, 4mndcl 18669 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
2119, 8, 9, 20syl3anc 1373 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ 𝑆)
2217, 11, 213jca 1128 . . . . 5 (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
2322adantr 480 . . . 4 ((𝜑𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
245, 1mgpbas 20054 . . . . 5 𝑆 = (Base‘𝐺)
255, 2mgpplusg 20053 . . . . 5 × = (+g𝐺)
2624, 6, 25mulgnn0p1 19017 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2723, 26syl 17 . . 3 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2824, 6, 17, 11, 21mulgnn0cld 19027 . . . . . . 7 (𝜑 → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
2928, 8, 93jca 1128 . . . . . 6 (𝜑 → ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆))
307, 29jca 511 . . . . 5 (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
3130adantr 480 . . . 4 ((𝜑𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
321, 4, 2srgdi 20106 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3331, 32syl 17 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3427, 33eqtrd 2764 . 2 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
35 elfzelz 13485 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
36 bcpasc 14286 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3711, 35, 36syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3837oveq1d 7402 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3919adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd)
40 bccl 14287 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
4111, 35, 40syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
4235adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
43 peano2zm 12576 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
45 bccl 14287 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
4611, 44, 45syl2an2r 685 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
477adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing)
4817adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd)
49 fznn0sub 13517 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
5049adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
518adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐴𝑆)
5224, 6, 48, 50, 51mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
53 elfznn0 13581 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
559adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵𝑆)
5624, 6, 48, 54, 55mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
571, 2srgcl 20102 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
5847, 52, 56, 57syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
591, 3, 4mulgnn0dir 19036 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6039, 41, 46, 58, 59syl13anc 1374 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6138, 60eqtr3d 2766 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6261mpteq2dva 5200 . . . . 5 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
6362oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
64 srgcmn 20098 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
657, 64syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
66 fzfid 13938 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
671, 3, 39, 41, 58mulgnn0cld 19027 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
6835, 43syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
6911, 68, 45syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
701, 3, 39, 69, 58mulgnn0cld 19027 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
71 eqid 2729 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
72 eqid 2729 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
731, 4, 65, 66, 67, 70, 71, 72gsummptfidmadd 19855 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7463, 73eqtrd 2764 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7574adantr 480 . 2 ((𝜑𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7615, 34, 753eqtr4d 2774 1 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267  Basecbs 17179  +gcplusg 17220  .rcmulr 17221   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  SRingcsrg 20095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-mgp 20050  df-ur 20091  df-srg 20096
This theorem is referenced by:  srgbinom  20140
  Copyright terms: Public domain W3C validator