MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem Structured version   Visualization version   GIF version

Theorem srgbinomlem 19695
Description: Lemma for srgbinom 19696. Inductive step, analogous to binomlem 15469. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘   + ,𝑘
Allowed substitution hints:   𝜓(𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem
StepHypRef Expression
1 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
2 srgbinom.m . . . 4 × = (.r𝑅)
3 srgbinom.t . . . 4 · = (.g𝑅)
4 srgbinom.a . . . 4 + = (+g𝑅)
5 srgbinom.g . . . 4 𝐺 = (mulGrp‘𝑅)
6 srgbinom.e . . . 4 = (.g𝐺)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 srgbinomlem.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
11 srgbinomlem.n . . . 4 (𝜑𝑁 ∈ ℕ0)
12 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem3 19693 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem4 19694 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1513, 14oveq12d 7273 . 2 ((𝜑𝜓) → (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
165srgmgp 19661 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
177, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
18 srgmnd 19660 . . . . . . . 8 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
197, 18syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
201, 4mndcl 18308 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
2119, 8, 9, 20syl3anc 1369 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ 𝑆)
2217, 11, 213jca 1126 . . . . 5 (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
2322adantr 480 . . . 4 ((𝜑𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
245, 1mgpbas 19641 . . . . 5 𝑆 = (Base‘𝐺)
255, 2mgpplusg 19639 . . . . 5 × = (+g𝐺)
2624, 6, 25mulgnn0p1 18630 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2723, 26syl 17 . . 3 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2824, 6mulgnn0cl 18635 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
2917, 11, 21, 28syl3anc 1369 . . . . . . 7 (𝜑 → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
3029, 8, 93jca 1126 . . . . . 6 (𝜑 → ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆))
317, 30jca 511 . . . . 5 (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
3231adantr 480 . . . 4 ((𝜑𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
331, 4, 2srgdi 19667 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3432, 33syl 17 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3527, 34eqtrd 2778 . 2 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
36 elfzelz 13185 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
37 bcpasc 13963 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3811, 36, 37syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3938oveq1d 7270 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
4019adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd)
41 bccl 13964 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
4211, 36, 41syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
4336adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
44 peano2zm 12293 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4543, 44syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
46 bccl 13964 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
4711, 45, 46syl2an2r 681 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
487adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing)
4917adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd)
50 fznn0sub 13217 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
5150adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
528adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐴𝑆)
5324, 6mulgnn0cl 18635 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝐴𝑆) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
5449, 51, 52, 53syl3anc 1369 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
55 elfznn0 13278 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
5655adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
579adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵𝑆)
5824, 6mulgnn0cl 18635 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝐵𝑆) → (𝑘 𝐵) ∈ 𝑆)
5949, 56, 57, 58syl3anc 1369 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
601, 2srgcl 19663 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
6148, 54, 59, 60syl3anc 1369 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
621, 3, 4mulgnn0dir 18648 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6340, 42, 47, 61, 62syl13anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6439, 63eqtr3d 2780 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6564mpteq2dva 5170 . . . . 5 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
6665oveq2d 7271 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
67 srgcmn 19659 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
687, 67syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
69 fzfid 13621 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
701, 3mulgnn0cl 18635 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑁C𝑘) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7140, 42, 61, 70syl3anc 1369 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7236, 44syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
7311, 72, 46syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
741, 3mulgnn0cl 18635 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7540, 73, 61, 74syl3anc 1369 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
76 eqid 2738 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
77 eqid 2738 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
781, 4, 68, 69, 71, 75, 76, 77gsummptfidmadd 19441 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
7966, 78eqtrd 2778 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
8079adantr 480 . 2 ((𝜑𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
8115, 35, 803eqtr4d 2788 1 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  0cn0 12163  cz 12249  ...cfz 13168  Ccbc 13944  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301  mulGrpcmgp 19635  SRingcsrg 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-mgp 19636  df-ur 19653  df-srg 19657
This theorem is referenced by:  srgbinom  19696
  Copyright terms: Public domain W3C validator