Step | Hyp | Ref
| Expression |
1 | | simprl 768 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
2 | | simpll 764 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) |
4 | | dicssdvh.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
5 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(oc‘𝐾) =
(oc‘𝐾) |
6 | | dicssdvh.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | dicssdvh.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
8 | 4, 5, 6, 7 | lhpocnel 38032 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
9 | 8 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
10 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
11 | | eqid 2738 |
. . . . . . . . . 10
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(℩𝑔
∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) |
13 | 4, 6, 7, 11, 12 | ltrniotacl 38593 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
14 | 2, 9, 10, 13 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
16 | 7, 11, 15 | tendocl 38781 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∈ ((LTrn‘𝐾)‘𝑊)) |
17 | 2, 3, 14, 16 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∈ ((LTrn‘𝐾)‘𝑊)) |
18 | 1, 17 | eqeltrd 2839 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
19 | 18, 3, 3 | jca31 515 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) |
20 | 19 | ex 413 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))) |
21 | 20 | ssopab2dv 5464 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ {〈𝑓, 𝑠〉 ∣ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
22 | | opabssxp 5679 |
. . 3
⊢
{〈𝑓, 𝑠〉 ∣ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) |
23 | 21, 22 | sstrdi 3933 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
24 | | eqid 2738 |
. . 3
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
25 | | dicssdvh.i |
. . 3
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
26 | 4, 6, 7, 24, 11, 15, 25 | dicval 39190 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
27 | | dicssdvh.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
28 | | dicssdvh.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
29 | 7, 11, 15, 27, 28 | dvhvbase 39101 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
30 | 29 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
31 | 23, 26, 30 | 3sstr4d 3968 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ 𝑉) |