Step | Hyp | Ref
| Expression |
1 | | simprl 768 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π))) |
2 | | simpll 764 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β (πΎ β HL β§ π β π»)) |
3 | | simprr 770 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β π β ((TEndoβπΎ)βπ)) |
4 | | dicssdvh.l |
. . . . . . . . . . 11
β’ β€ =
(leβπΎ) |
5 | | eqid 2731 |
. . . . . . . . . . 11
β’
(ocβπΎ) =
(ocβπΎ) |
6 | | dicssdvh.a |
. . . . . . . . . . 11
β’ π΄ = (AtomsβπΎ) |
7 | | dicssdvh.h |
. . . . . . . . . . 11
β’ π» = (LHypβπΎ) |
8 | 4, 5, 6, 7 | lhpocnel 39193 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β π») β (((ocβπΎ)βπ) β π΄ β§ Β¬ ((ocβπΎ)βπ) β€ π)) |
9 | 8 | ad2antrr 723 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β (((ocβπΎ)βπ) β π΄ β§ Β¬ ((ocβπΎ)βπ) β€ π)) |
10 | | simplr 766 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β (π β π΄ β§ Β¬ π β€ π)) |
11 | | eqid 2731 |
. . . . . . . . . 10
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
12 | | eqid 2731 |
. . . . . . . . . 10
β’
(β©π
β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π) = (β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π) |
13 | 4, 6, 7, 11, 12 | ltrniotacl 39754 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (((ocβπΎ)βπ) β π΄ β§ Β¬ ((ocβπΎ)βπ) β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π) β ((LTrnβπΎ)βπ)) |
14 | 2, 9, 10, 13 | syl3anc 1370 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β (β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π) β ((LTrnβπΎ)βπ)) |
15 | | eqid 2731 |
. . . . . . . . 9
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
16 | 7, 11, 15 | tendocl 39942 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π β ((TEndoβπΎ)βπ) β§ (β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π) β ((LTrnβπΎ)βπ)) β (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β ((LTrnβπΎ)βπ)) |
17 | 2, 3, 14, 16 | syl3anc 1370 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β ((LTrnβπΎ)βπ)) |
18 | 1, 17 | eqeltrd 2832 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β π β ((LTrnβπΎ)βπ)) |
19 | 18, 3, 3 | jca31 514 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))) β ((π β ((LTrnβπΎ)βπ) β§ π β ((TEndoβπΎ)βπ)) β§ π β ((TEndoβπΎ)βπ))) |
20 | 19 | ex 412 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ)) β ((π β ((LTrnβπΎ)βπ) β§ π β ((TEndoβπΎ)βπ)) β§ π β ((TEndoβπΎ)βπ)))) |
21 | 20 | ssopab2dv 5551 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β {β¨π, π β© β£ ((π β ((LTrnβπΎ)βπ) β§ π β ((TEndoβπΎ)βπ)) β§ π β ((TEndoβπΎ)βπ))}) |
22 | | opabssxp 5768 |
. . 3
β’
{β¨π, π β© β£ ((π β ((LTrnβπΎ)βπ) β§ π β ((TEndoβπΎ)βπ)) β§ π β ((TEndoβπΎ)βπ))} β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) |
23 | 21, 22 | sstrdi 3994 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
24 | | eqid 2731 |
. . 3
β’
((ocβπΎ)βπ) = ((ocβπΎ)βπ) |
25 | | dicssdvh.i |
. . 3
β’ πΌ = ((DIsoCβπΎ)βπ) |
26 | 4, 6, 7, 24, 11, 15, 25 | dicval 40351 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ)(πβ((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) |
27 | | dicssdvh.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
28 | | dicssdvh.v |
. . . 4
β’ π = (Baseβπ) |
29 | 7, 11, 15, 27, 28 | dvhvbase 40262 |
. . 3
β’ ((πΎ β HL β§ π β π») β π = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
30 | 29 | adantr 480 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
31 | 23, 26, 30 | 3sstr4d 4029 |
1
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β π) |