Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf2.1 | ⊢ Ⅎ𝑥𝐹 |
pimgtmnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimgtmnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴) |
3 | ssid 3943 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
5 | pimgtmnf2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
6 | 5 | ffvelrnda 6961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
7 | 6 | mnfltd 12860 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ < (𝐹‘𝑦)) |
8 | 7 | ralrimiva 3103 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦)) |
9 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
10 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
11 | pimgtmnf2.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
12 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
13 | 11, 12 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
14 | 9, 10, 13 | nfbr 5121 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
15 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
16 | fveq2 6774 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
17 | 16 | breq2d 5086 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (-∞ < (𝐹‘𝑦) ↔ -∞ < (𝐹‘𝑥))) |
18 | 14, 15, 17 | cbvralw 3373 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦) ↔ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
19 | 8, 18 | sylib 217 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
20 | 4, 19 | jca 512 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
21 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
22 | 21, 21 | ssrabf 42664 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
23 | 20, 22 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)}) |
24 | 2, 23 | eqssd 3938 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 -∞cmnf 11007 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: pimgtmnf 44259 |
Copyright terms: Public domain | W3C validator |