| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf2 | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pimgtmnf2.1 | ⊢ Ⅎ𝑥𝐹 |
| pimgtmnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimgtmnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4027 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴) |
| 3 | ssid 3952 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| 5 | pimgtmnf2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 6 | 5 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 7 | 6 | mnfltd 13023 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ < (𝐹‘𝑦)) |
| 8 | 7 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦)) |
| 9 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
| 10 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 11 | pimgtmnf2.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 12 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 13 | 11, 12 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 14 | 9, 10, 13 | nfbr 5136 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
| 15 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
| 16 | fveq2 6822 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 17 | 16 | breq2d 5101 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (-∞ < (𝐹‘𝑦) ↔ -∞ < (𝐹‘𝑥))) |
| 18 | 14, 15, 17 | cbvralw 3274 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦) ↔ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
| 20 | 4, 19 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
| 21 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 22 | 21, 21 | ssrabf 45210 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
| 23 | 20, 22 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)}) |
| 24 | 2, 23 | eqssd 3947 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 {crab 3395 ⊆ wss 3897 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 -∞cmnf 11144 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |