Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf2 Structured version   Visualization version   GIF version

Theorem pimgtmnf2 42991
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf2.1 𝑥𝐹
pimgtmnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtmnf2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimgtmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . 3 {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴)
3 ssid 3988 . . . . 5 𝐴𝐴
43a1i 11 . . . 4 (𝜑𝐴𝐴)
5 pimgtmnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
65ffvelrnda 6850 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
76mnfltd 12518 . . . . . 6 ((𝜑𝑦𝐴) → -∞ < (𝐹𝑦))
87ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑦𝐴 -∞ < (𝐹𝑦))
9 nfcv 2977 . . . . . . 7 𝑥-∞
10 nfcv 2977 . . . . . . 7 𝑥 <
11 pimgtmnf2.1 . . . . . . . 8 𝑥𝐹
12 nfcv 2977 . . . . . . . 8 𝑥𝑦
1311, 12nffv 6679 . . . . . . 7 𝑥(𝐹𝑦)
149, 10, 13nfbr 5112 . . . . . 6 𝑥-∞ < (𝐹𝑦)
15 nfv 1911 . . . . . 6 𝑦-∞ < (𝐹𝑥)
16 fveq2 6669 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1716breq2d 5077 . . . . . 6 (𝑦 = 𝑥 → (-∞ < (𝐹𝑦) ↔ -∞ < (𝐹𝑥)))
1814, 15, 17cbvralw 3441 . . . . 5 (∀𝑦𝐴 -∞ < (𝐹𝑦) ↔ ∀𝑥𝐴 -∞ < (𝐹𝑥))
198, 18sylib 220 . . . 4 (𝜑 → ∀𝑥𝐴 -∞ < (𝐹𝑥))
204, 19jca 514 . . 3 (𝜑 → (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
21 nfcv 2977 . . . 4 𝑥𝐴
2221, 21ssrabf 41379 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
2320, 22sylibr 236 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)})
242, 23eqssd 3983 1 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  wral 3138  {crab 3142  wss 3935   class class class wbr 5065  wf 6350  cfv 6354  cr 10535  -∞cmnf 10672   < clt 10674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679
This theorem is referenced by:  pimgtmnf  42999
  Copyright terms: Public domain W3C validator