Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf2 Structured version   Visualization version   GIF version

Theorem pimgtmnf2 44251
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf2.1 𝑥𝐹
pimgtmnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtmnf2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimgtmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . . 3 {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴)
3 ssid 3943 . . . . 5 𝐴𝐴
43a1i 11 . . . 4 (𝜑𝐴𝐴)
5 pimgtmnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
65ffvelrnda 6961 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
76mnfltd 12860 . . . . . 6 ((𝜑𝑦𝐴) → -∞ < (𝐹𝑦))
87ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑦𝐴 -∞ < (𝐹𝑦))
9 nfcv 2907 . . . . . . 7 𝑥-∞
10 nfcv 2907 . . . . . . 7 𝑥 <
11 pimgtmnf2.1 . . . . . . . 8 𝑥𝐹
12 nfcv 2907 . . . . . . . 8 𝑥𝑦
1311, 12nffv 6784 . . . . . . 7 𝑥(𝐹𝑦)
149, 10, 13nfbr 5121 . . . . . 6 𝑥-∞ < (𝐹𝑦)
15 nfv 1917 . . . . . 6 𝑦-∞ < (𝐹𝑥)
16 fveq2 6774 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1716breq2d 5086 . . . . . 6 (𝑦 = 𝑥 → (-∞ < (𝐹𝑦) ↔ -∞ < (𝐹𝑥)))
1814, 15, 17cbvralw 3373 . . . . 5 (∀𝑦𝐴 -∞ < (𝐹𝑦) ↔ ∀𝑥𝐴 -∞ < (𝐹𝑥))
198, 18sylib 217 . . . 4 (𝜑 → ∀𝑥𝐴 -∞ < (𝐹𝑥))
204, 19jca 512 . . 3 (𝜑 → (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
21 nfcv 2907 . . . 4 𝑥𝐴
2221, 21ssrabf 42664 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
2320, 22sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)})
242, 23eqssd 3938 1 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  {crab 3068  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  -∞cmnf 11007   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  pimgtmnf  44259
  Copyright terms: Public domain W3C validator