![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -β, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf2.1 | β’ β²π₯πΉ |
pimgtmnf2.2 | β’ (π β πΉ:π΄βΆβ) |
Ref | Expression |
---|---|
pimgtmnf2 | β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4076 | . . 3 β’ {π₯ β π΄ β£ -β < (πΉβπ₯)} β π΄ | |
2 | 1 | a1i 11 | . 2 β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} β π΄) |
3 | ssid 4003 | . . . . 5 β’ π΄ β π΄ | |
4 | 3 | a1i 11 | . . . 4 β’ (π β π΄ β π΄) |
5 | pimgtmnf2.2 | . . . . . . . 8 β’ (π β πΉ:π΄βΆβ) | |
6 | 5 | ffvelcdmda 7083 | . . . . . . 7 β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β β) |
7 | 6 | mnfltd 13100 | . . . . . 6 β’ ((π β§ π¦ β π΄) β -β < (πΉβπ¦)) |
8 | 7 | ralrimiva 3146 | . . . . 5 β’ (π β βπ¦ β π΄ -β < (πΉβπ¦)) |
9 | nfcv 2903 | . . . . . . 7 β’ β²π₯-β | |
10 | nfcv 2903 | . . . . . . 7 β’ β²π₯ < | |
11 | pimgtmnf2.1 | . . . . . . . 8 β’ β²π₯πΉ | |
12 | nfcv 2903 | . . . . . . . 8 β’ β²π₯π¦ | |
13 | 11, 12 | nffv 6898 | . . . . . . 7 β’ β²π₯(πΉβπ¦) |
14 | 9, 10, 13 | nfbr 5194 | . . . . . 6 β’ β²π₯-β < (πΉβπ¦) |
15 | nfv 1917 | . . . . . 6 β’ β²π¦-β < (πΉβπ₯) | |
16 | fveq2 6888 | . . . . . . 7 β’ (π¦ = π₯ β (πΉβπ¦) = (πΉβπ₯)) | |
17 | 16 | breq2d 5159 | . . . . . 6 β’ (π¦ = π₯ β (-β < (πΉβπ¦) β -β < (πΉβπ₯))) |
18 | 14, 15, 17 | cbvralw 3303 | . . . . 5 β’ (βπ¦ β π΄ -β < (πΉβπ¦) β βπ₯ β π΄ -β < (πΉβπ₯)) |
19 | 8, 18 | sylib 217 | . . . 4 β’ (π β βπ₯ β π΄ -β < (πΉβπ₯)) |
20 | 4, 19 | jca 512 | . . 3 β’ (π β (π΄ β π΄ β§ βπ₯ β π΄ -β < (πΉβπ₯))) |
21 | nfcv 2903 | . . . 4 β’ β²π₯π΄ | |
22 | 21, 21 | ssrabf 43788 | . . 3 β’ (π΄ β {π₯ β π΄ β£ -β < (πΉβπ₯)} β (π΄ β π΄ β§ βπ₯ β π΄ -β < (πΉβπ₯))) |
23 | 20, 22 | sylibr 233 | . 2 β’ (π β π΄ β {π₯ β π΄ β£ -β < (πΉβπ₯)}) |
24 | 2, 23 | eqssd 3998 | 1 β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β²wnfc 2883 βwral 3061 {crab 3432 β wss 3947 class class class wbr 5147 βΆwf 6536 βcfv 6540 βcr 11105 -βcmnf 11242 < clt 11244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |