Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf2 Structured version   Visualization version   GIF version

Theorem pimgtmnf2 46715
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf2.1 𝑥𝐹
pimgtmnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtmnf2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimgtmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4031 . . 3 {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ⊆ 𝐴)
3 ssid 3958 . . . . 5 𝐴𝐴
43a1i 11 . . . 4 (𝜑𝐴𝐴)
5 pimgtmnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
65ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
76mnfltd 13026 . . . . . 6 ((𝜑𝑦𝐴) → -∞ < (𝐹𝑦))
87ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑦𝐴 -∞ < (𝐹𝑦))
9 nfcv 2891 . . . . . . 7 𝑥-∞
10 nfcv 2891 . . . . . . 7 𝑥 <
11 pimgtmnf2.1 . . . . . . . 8 𝑥𝐹
12 nfcv 2891 . . . . . . . 8 𝑥𝑦
1311, 12nffv 6832 . . . . . . 7 𝑥(𝐹𝑦)
149, 10, 13nfbr 5139 . . . . . 6 𝑥-∞ < (𝐹𝑦)
15 nfv 1914 . . . . . 6 𝑦-∞ < (𝐹𝑥)
16 fveq2 6822 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1716breq2d 5104 . . . . . 6 (𝑦 = 𝑥 → (-∞ < (𝐹𝑦) ↔ -∞ < (𝐹𝑥)))
1814, 15, 17cbvralw 3271 . . . . 5 (∀𝑦𝐴 -∞ < (𝐹𝑦) ↔ ∀𝑥𝐴 -∞ < (𝐹𝑥))
198, 18sylib 218 . . . 4 (𝜑 → ∀𝑥𝐴 -∞ < (𝐹𝑥))
204, 19jca 511 . . 3 (𝜑 → (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
21 nfcv 2891 . . . 4 𝑥𝐴
2221, 21ssrabf 45112 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 -∞ < (𝐹𝑥)))
2320, 22sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < (𝐹𝑥)})
242, 23eqssd 3953 1 (𝜑 → {𝑥𝐴 ∣ -∞ < (𝐹𝑥)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  {crab 3394  wss 3903   class class class wbr 5092  wf 6478  cfv 6482  cr 11008  -∞cmnf 11147   < clt 11149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator