Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf2 Structured version   Visualization version   GIF version

Theorem pimgtmnf2 45416
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf2.1 β„²π‘₯𝐹
pimgtmnf2.2 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
Assertion
Ref Expression
pimgtmnf2 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)} = 𝐴)
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   πœ‘(π‘₯)   𝐹(π‘₯)

Proof of Theorem pimgtmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4076 . . 3 {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)} βŠ† 𝐴
21a1i 11 . 2 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)} βŠ† 𝐴)
3 ssid 4003 . . . . 5 𝐴 βŠ† 𝐴
43a1i 11 . . . 4 (πœ‘ β†’ 𝐴 βŠ† 𝐴)
5 pimgtmnf2.2 . . . . . . . 8 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
65ffvelcdmda 7083 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ (πΉβ€˜π‘¦) ∈ ℝ)
76mnfltd 13100 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ -∞ < (πΉβ€˜π‘¦))
87ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝐴 -∞ < (πΉβ€˜π‘¦))
9 nfcv 2903 . . . . . . 7 β„²π‘₯-∞
10 nfcv 2903 . . . . . . 7 β„²π‘₯ <
11 pimgtmnf2.1 . . . . . . . 8 β„²π‘₯𝐹
12 nfcv 2903 . . . . . . . 8 β„²π‘₯𝑦
1311, 12nffv 6898 . . . . . . 7 β„²π‘₯(πΉβ€˜π‘¦)
149, 10, 13nfbr 5194 . . . . . 6 β„²π‘₯-∞ < (πΉβ€˜π‘¦)
15 nfv 1917 . . . . . 6 Ⅎ𝑦-∞ < (πΉβ€˜π‘₯)
16 fveq2 6888 . . . . . . 7 (𝑦 = π‘₯ β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘₯))
1716breq2d 5159 . . . . . 6 (𝑦 = π‘₯ β†’ (-∞ < (πΉβ€˜π‘¦) ↔ -∞ < (πΉβ€˜π‘₯)))
1814, 15, 17cbvralw 3303 . . . . 5 (βˆ€π‘¦ ∈ 𝐴 -∞ < (πΉβ€˜π‘¦) ↔ βˆ€π‘₯ ∈ 𝐴 -∞ < (πΉβ€˜π‘₯))
198, 18sylib 217 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 -∞ < (πΉβ€˜π‘₯))
204, 19jca 512 . . 3 (πœ‘ β†’ (𝐴 βŠ† 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 -∞ < (πΉβ€˜π‘₯)))
21 nfcv 2903 . . . 4 β„²π‘₯𝐴
2221, 21ssrabf 43788 . . 3 (𝐴 βŠ† {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)} ↔ (𝐴 βŠ† 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 -∞ < (πΉβ€˜π‘₯)))
2320, 22sylibr 233 . 2 (πœ‘ β†’ 𝐴 βŠ† {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)})
242, 23eqssd 3998 1 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ -∞ < (πΉβ€˜π‘₯)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β„²wnfc 2883  βˆ€wral 3061  {crab 3432   βŠ† wss 3947   class class class wbr 5147  βŸΆwf 6536  β€˜cfv 6540  β„cr 11105  -∞cmnf 11242   < clt 11244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator