![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -β, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf2.1 | β’ β²π₯πΉ |
pimgtmnf2.2 | β’ (π β πΉ:π΄βΆβ) |
Ref | Expression |
---|---|
pimgtmnf2 | β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4072 | . . 3 β’ {π₯ β π΄ β£ -β < (πΉβπ₯)} β π΄ | |
2 | 1 | a1i 11 | . 2 β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} β π΄) |
3 | ssid 3999 | . . . . 5 β’ π΄ β π΄ | |
4 | 3 | a1i 11 | . . . 4 β’ (π β π΄ β π΄) |
5 | pimgtmnf2.2 | . . . . . . . 8 β’ (π β πΉ:π΄βΆβ) | |
6 | 5 | ffvelcdmda 7080 | . . . . . . 7 β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β β) |
7 | 6 | mnfltd 13110 | . . . . . 6 β’ ((π β§ π¦ β π΄) β -β < (πΉβπ¦)) |
8 | 7 | ralrimiva 3140 | . . . . 5 β’ (π β βπ¦ β π΄ -β < (πΉβπ¦)) |
9 | nfcv 2897 | . . . . . . 7 β’ β²π₯-β | |
10 | nfcv 2897 | . . . . . . 7 β’ β²π₯ < | |
11 | pimgtmnf2.1 | . . . . . . . 8 β’ β²π₯πΉ | |
12 | nfcv 2897 | . . . . . . . 8 β’ β²π₯π¦ | |
13 | 11, 12 | nffv 6895 | . . . . . . 7 β’ β²π₯(πΉβπ¦) |
14 | 9, 10, 13 | nfbr 5188 | . . . . . 6 β’ β²π₯-β < (πΉβπ¦) |
15 | nfv 1909 | . . . . . 6 β’ β²π¦-β < (πΉβπ₯) | |
16 | fveq2 6885 | . . . . . . 7 β’ (π¦ = π₯ β (πΉβπ¦) = (πΉβπ₯)) | |
17 | 16 | breq2d 5153 | . . . . . 6 β’ (π¦ = π₯ β (-β < (πΉβπ¦) β -β < (πΉβπ₯))) |
18 | 14, 15, 17 | cbvralw 3297 | . . . . 5 β’ (βπ¦ β π΄ -β < (πΉβπ¦) β βπ₯ β π΄ -β < (πΉβπ₯)) |
19 | 8, 18 | sylib 217 | . . . 4 β’ (π β βπ₯ β π΄ -β < (πΉβπ₯)) |
20 | 4, 19 | jca 511 | . . 3 β’ (π β (π΄ β π΄ β§ βπ₯ β π΄ -β < (πΉβπ₯))) |
21 | nfcv 2897 | . . . 4 β’ β²π₯π΄ | |
22 | 21, 21 | ssrabf 44378 | . . 3 β’ (π΄ β {π₯ β π΄ β£ -β < (πΉβπ₯)} β (π΄ β π΄ β§ βπ₯ β π΄ -β < (πΉβπ₯))) |
23 | 20, 22 | sylibr 233 | . 2 β’ (π β π΄ β {π₯ β π΄ β£ -β < (πΉβπ₯)}) |
24 | 2, 23 | eqssd 3994 | 1 β’ (π β {π₯ β π΄ β£ -β < (πΉβπ₯)} = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β²wnfc 2877 βwral 3055 {crab 3426 β wss 3943 class class class wbr 5141 βΆwf 6533 βcfv 6537 βcr 11111 -βcmnf 11250 < clt 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |