Proof of Theorem cnvtrcl0
| Step | Hyp | Ref
| Expression |
| 1 | | cnvco 5896 |
. . . . . 6
⊢ ◡(𝑦 ∘ 𝑦) = (◡𝑦 ∘ ◡𝑦) |
| 2 | | cnvss 5883 |
. . . . . 6
⊢ ((𝑦 ∘ 𝑦) ⊆ 𝑦 → ◡(𝑦 ∘ 𝑦) ⊆ ◡𝑦) |
| 3 | 1, 2 | eqsstrrid 4023 |
. . . . 5
⊢ ((𝑦 ∘ 𝑦) ⊆ 𝑦 → (◡𝑦 ∘ ◡𝑦) ⊆ ◡𝑦) |
| 4 | | coundir 6268 |
. . . . . . 7
⊢ ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) = ((◡𝑦 ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ∪ ((𝑋 ∖ ◡◡𝑋) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 5 | | coundi 6267 |
. . . . . . . . 9
⊢ (◡𝑦 ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) = ((◡𝑦 ∘ ◡𝑦) ∪ (◡𝑦 ∘ (𝑋 ∖ ◡◡𝑋))) |
| 6 | | ssid 4006 |
. . . . . . . . . 10
⊢ (◡𝑦 ∘ ◡𝑦) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 7 | | cononrel2 43608 |
. . . . . . . . . . 11
⊢ (◡𝑦 ∘ (𝑋 ∖ ◡◡𝑋)) = ∅ |
| 8 | | 0ss 4400 |
. . . . . . . . . . 11
⊢ ∅
⊆ (◡𝑦 ∘ ◡𝑦) |
| 9 | 7, 8 | eqsstri 4030 |
. . . . . . . . . 10
⊢ (◡𝑦 ∘ (𝑋 ∖ ◡◡𝑋)) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 10 | 6, 9 | unssi 4191 |
. . . . . . . . 9
⊢ ((◡𝑦 ∘ ◡𝑦) ∪ (◡𝑦 ∘ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 11 | 5, 10 | eqsstri 4030 |
. . . . . . . 8
⊢ (◡𝑦 ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 12 | | cononrel1 43607 |
. . . . . . . . 9
⊢ ((𝑋 ∖ ◡◡𝑋) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) = ∅ |
| 13 | 12, 8 | eqsstri 4030 |
. . . . . . . 8
⊢ ((𝑋 ∖ ◡◡𝑋) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 14 | 11, 13 | unssi 4191 |
. . . . . . 7
⊢ ((◡𝑦 ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ∪ ((𝑋 ∖ ◡◡𝑋) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 15 | 4, 14 | eqsstri 4030 |
. . . . . 6
⊢ ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∘ ◡𝑦) |
| 16 | | id 22 |
. . . . . 6
⊢ ((◡𝑦 ∘ ◡𝑦) ⊆ ◡𝑦 → (◡𝑦 ∘ ◡𝑦) ⊆ ◡𝑦) |
| 17 | 15, 16 | sstrid 3995 |
. . . . 5
⊢ ((◡𝑦 ∘ ◡𝑦) ⊆ ◡𝑦 → ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ ◡𝑦) |
| 18 | | ssun3 4180 |
. . . . 5
⊢ (((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ ◡𝑦 → ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 19 | 3, 17, 18 | 3syl 18 |
. . . 4
⊢ ((𝑦 ∘ 𝑦) ⊆ 𝑦 → ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 20 | | id 22 |
. . . . . 6
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 21 | 20, 20 | coeq12d 5875 |
. . . . 5
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (𝑥 ∘ 𝑥) = ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 22 | 21, 20 | sseq12d 4017 |
. . . 4
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ((𝑥 ∘ 𝑥) ⊆ 𝑥 ↔ ((◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∘ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 23 | 19, 22 | imbitrrid 246 |
. . 3
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ((𝑦 ∘ 𝑦) ⊆ 𝑦 → (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 24 | 23 | adantl 481 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → ((𝑦 ∘ 𝑦) ⊆ 𝑦 → (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 25 | | cnvco 5896 |
. . . . 5
⊢ ◡(𝑥 ∘ 𝑥) = (◡𝑥 ∘ ◡𝑥) |
| 26 | | cnvss 5883 |
. . . . 5
⊢ ((𝑥 ∘ 𝑥) ⊆ 𝑥 → ◡(𝑥 ∘ 𝑥) ⊆ ◡𝑥) |
| 27 | 25, 26 | eqsstrrid 4023 |
. . . 4
⊢ ((𝑥 ∘ 𝑥) ⊆ 𝑥 → (◡𝑥 ∘ ◡𝑥) ⊆ ◡𝑥) |
| 28 | | id 22 |
. . . . . 6
⊢ (𝑦 = ◡𝑥 → 𝑦 = ◡𝑥) |
| 29 | 28, 28 | coeq12d 5875 |
. . . . 5
⊢ (𝑦 = ◡𝑥 → (𝑦 ∘ 𝑦) = (◡𝑥 ∘ ◡𝑥)) |
| 30 | 29, 28 | sseq12d 4017 |
. . . 4
⊢ (𝑦 = ◡𝑥 → ((𝑦 ∘ 𝑦) ⊆ 𝑦 ↔ (◡𝑥 ∘ ◡𝑥) ⊆ ◡𝑥)) |
| 31 | 27, 30 | imbitrrid 246 |
. . 3
⊢ (𝑦 = ◡𝑥 → ((𝑥 ∘ 𝑥) ⊆ 𝑥 → (𝑦 ∘ 𝑦) ⊆ 𝑦)) |
| 32 | 31 | adantl 481 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → ((𝑥 ∘ 𝑥) ⊆ 𝑥 → (𝑦 ∘ 𝑦) ⊆ 𝑦)) |
| 33 | | id 22 |
. . . 4
⊢ (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → 𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
| 34 | 33, 33 | coeq12d 5875 |
. . 3
⊢ (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → (𝑥 ∘ 𝑥) = ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))) |
| 35 | 34, 33 | sseq12d 4017 |
. 2
⊢ (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → ((𝑥 ∘ 𝑥) ⊆ 𝑥 ↔ ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))) |
| 36 | | ssun1 4178 |
. . 3
⊢ 𝑋 ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) |
| 37 | 36 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
| 38 | | trclexlem 15033 |
. 2
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∈ V) |
| 39 | | coundir 6268 |
. . . . 5
⊢ ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = ((𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ∪ ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))) |
| 40 | | coundi 6267 |
. . . . . . 7
⊢ (𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = ((𝑋 ∘ 𝑋) ∪ (𝑋 ∘ (dom 𝑋 × ran 𝑋))) |
| 41 | | cossxp 6292 |
. . . . . . . 8
⊢ (𝑋 ∘ 𝑋) ⊆ (dom 𝑋 × ran 𝑋) |
| 42 | | cossxp 6292 |
. . . . . . . . 9
⊢ (𝑋 ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom (dom 𝑋 × ran 𝑋) × ran 𝑋) |
| 43 | | dmxpss 6191 |
. . . . . . . . . 10
⊢ dom (dom
𝑋 × ran 𝑋) ⊆ dom 𝑋 |
| 44 | | xpss1 5704 |
. . . . . . . . . 10
⊢ (dom (dom
𝑋 × ran 𝑋) ⊆ dom 𝑋 → (dom (dom 𝑋 × ran 𝑋) × ran 𝑋) ⊆ (dom 𝑋 × ran 𝑋)) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . . 9
⊢ (dom (dom
𝑋 × ran 𝑋) × ran 𝑋) ⊆ (dom 𝑋 × ran 𝑋) |
| 46 | 42, 45 | sstri 3993 |
. . . . . . . 8
⊢ (𝑋 ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋) |
| 47 | 41, 46 | unssi 4191 |
. . . . . . 7
⊢ ((𝑋 ∘ 𝑋) ∪ (𝑋 ∘ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋) |
| 48 | 40, 47 | eqsstri 4030 |
. . . . . 6
⊢ (𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋) |
| 49 | | coundi 6267 |
. . . . . . 7
⊢ ((dom
𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = (((dom 𝑋 × ran 𝑋) ∘ 𝑋) ∪ ((dom 𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋))) |
| 50 | | cossxp 6292 |
. . . . . . . . 9
⊢ ((dom
𝑋 × ran 𝑋) ∘ 𝑋) ⊆ (dom 𝑋 × ran (dom 𝑋 × ran 𝑋)) |
| 51 | | rnxpss 6192 |
. . . . . . . . . 10
⊢ ran (dom
𝑋 × ran 𝑋) ⊆ ran 𝑋 |
| 52 | | xpss2 5705 |
. . . . . . . . . 10
⊢ (ran (dom
𝑋 × ran 𝑋) ⊆ ran 𝑋 → (dom 𝑋 × ran (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋)) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . 9
⊢ (dom
𝑋 × ran (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋) |
| 54 | 50, 53 | sstri 3993 |
. . . . . . . 8
⊢ ((dom
𝑋 × ran 𝑋) ∘ 𝑋) ⊆ (dom 𝑋 × ran 𝑋) |
| 55 | | xptrrel 15019 |
. . . . . . . 8
⊢ ((dom
𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋) |
| 56 | 54, 55 | unssi 4191 |
. . . . . . 7
⊢ (((dom
𝑋 × ran 𝑋) ∘ 𝑋) ∪ ((dom 𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋) |
| 57 | 49, 56 | eqsstri 4030 |
. . . . . 6
⊢ ((dom
𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋) |
| 58 | 48, 57 | unssi 4191 |
. . . . 5
⊢ ((𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ∪ ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))) ⊆ (dom 𝑋 × ran 𝑋) |
| 59 | 39, 58 | eqsstri 4030 |
. . . 4
⊢ ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋) |
| 60 | | ssun2 4179 |
. . . 4
⊢ (dom
𝑋 × ran 𝑋) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) |
| 61 | 59, 60 | sstri 3993 |
. . 3
⊢ ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) |
| 62 | 61 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
| 63 | 24, 32, 35, 37, 38, 62 | clcnvlem 43636 |
1
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) |