Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrcl0 Structured version   Visualization version   GIF version

Theorem cnvtrcl0 43615
Description: The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvtrcl0 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)})
Distinct variable groups:   𝑥,𝑦,𝑉   𝑥,𝑋,𝑦

Proof of Theorem cnvtrcl0
StepHypRef Expression
1 cnvco 5849 . . . . . 6 (𝑦𝑦) = (𝑦𝑦)
2 cnvss 5836 . . . . . 6 ((𝑦𝑦) ⊆ 𝑦(𝑦𝑦) ⊆ 𝑦)
31, 2eqsstrrid 3986 . . . . 5 ((𝑦𝑦) ⊆ 𝑦 → (𝑦𝑦) ⊆ 𝑦)
4 coundir 6221 . . . . . . 7 ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) = ((𝑦 ∘ (𝑦 ∪ (𝑋𝑋))) ∪ ((𝑋𝑋) ∘ (𝑦 ∪ (𝑋𝑋))))
5 coundi 6220 . . . . . . . . 9 (𝑦 ∘ (𝑦 ∪ (𝑋𝑋))) = ((𝑦𝑦) ∪ (𝑦 ∘ (𝑋𝑋)))
6 ssid 3969 . . . . . . . . . 10 (𝑦𝑦) ⊆ (𝑦𝑦)
7 cononrel2 43584 . . . . . . . . . . 11 (𝑦 ∘ (𝑋𝑋)) = ∅
8 0ss 4363 . . . . . . . . . . 11 ∅ ⊆ (𝑦𝑦)
97, 8eqsstri 3993 . . . . . . . . . 10 (𝑦 ∘ (𝑋𝑋)) ⊆ (𝑦𝑦)
106, 9unssi 4154 . . . . . . . . 9 ((𝑦𝑦) ∪ (𝑦 ∘ (𝑋𝑋))) ⊆ (𝑦𝑦)
115, 10eqsstri 3993 . . . . . . . 8 (𝑦 ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦𝑦)
12 cononrel1 43583 . . . . . . . . 9 ((𝑋𝑋) ∘ (𝑦 ∪ (𝑋𝑋))) = ∅
1312, 8eqsstri 3993 . . . . . . . 8 ((𝑋𝑋) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦𝑦)
1411, 13unssi 4154 . . . . . . 7 ((𝑦 ∘ (𝑦 ∪ (𝑋𝑋))) ∪ ((𝑋𝑋) ∘ (𝑦 ∪ (𝑋𝑋)))) ⊆ (𝑦𝑦)
154, 14eqsstri 3993 . . . . . 6 ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦𝑦)
16 id 22 . . . . . 6 ((𝑦𝑦) ⊆ 𝑦 → (𝑦𝑦) ⊆ 𝑦)
1715, 16sstrid 3958 . . . . 5 ((𝑦𝑦) ⊆ 𝑦 → ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ 𝑦)
18 ssun3 4143 . . . . 5 (((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ 𝑦 → ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦 ∪ (𝑋𝑋)))
193, 17, 183syl 18 . . . 4 ((𝑦𝑦) ⊆ 𝑦 → ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦 ∪ (𝑋𝑋)))
20 id 22 . . . . . 6 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → 𝑥 = (𝑦 ∪ (𝑋𝑋)))
2120, 20coeq12d 5828 . . . . 5 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (𝑥𝑥) = ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))))
2221, 20sseq12d 3980 . . . 4 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑦 ∪ (𝑋𝑋)) ∘ (𝑦 ∪ (𝑋𝑋))) ⊆ (𝑦 ∪ (𝑋𝑋))))
2319, 22imbitrrid 246 . . 3 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ((𝑦𝑦) ⊆ 𝑦 → (𝑥𝑥) ⊆ 𝑥))
2423adantl 481 . 2 ((𝑋𝑉𝑥 = (𝑦 ∪ (𝑋𝑋))) → ((𝑦𝑦) ⊆ 𝑦 → (𝑥𝑥) ⊆ 𝑥))
25 cnvco 5849 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
26 cnvss 5836 . . . . 5 ((𝑥𝑥) ⊆ 𝑥(𝑥𝑥) ⊆ 𝑥)
2725, 26eqsstrrid 3986 . . . 4 ((𝑥𝑥) ⊆ 𝑥 → (𝑥𝑥) ⊆ 𝑥)
28 id 22 . . . . . 6 (𝑦 = 𝑥𝑦 = 𝑥)
2928, 28coeq12d 5828 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑦) = (𝑥𝑥))
3029, 28sseq12d 3980 . . . 4 (𝑦 = 𝑥 → ((𝑦𝑦) ⊆ 𝑦 ↔ (𝑥𝑥) ⊆ 𝑥))
3127, 30imbitrrid 246 . . 3 (𝑦 = 𝑥 → ((𝑥𝑥) ⊆ 𝑥 → (𝑦𝑦) ⊆ 𝑦))
3231adantl 481 . 2 ((𝑋𝑉𝑦 = 𝑥) → ((𝑥𝑥) ⊆ 𝑥 → (𝑦𝑦) ⊆ 𝑦))
33 id 22 . . . 4 (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → 𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
3433, 33coeq12d 5828 . . 3 (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → (𝑥𝑥) = ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))))
3534, 33sseq12d 3980 . 2 (𝑥 = (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))))
36 ssun1 4141 . . 3 𝑋 ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))
3736a1i 11 . 2 (𝑋𝑉𝑋 ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
38 trclexlem 14960 . 2 (𝑋𝑉 → (𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∈ V)
39 coundir 6221 . . . . 5 ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = ((𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ∪ ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))))
40 coundi 6220 . . . . . . 7 (𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = ((𝑋𝑋) ∪ (𝑋 ∘ (dom 𝑋 × ran 𝑋)))
41 cossxp 6245 . . . . . . . 8 (𝑋𝑋) ⊆ (dom 𝑋 × ran 𝑋)
42 cossxp 6245 . . . . . . . . 9 (𝑋 ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom (dom 𝑋 × ran 𝑋) × ran 𝑋)
43 dmxpss 6144 . . . . . . . . . 10 dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋
44 xpss1 5657 . . . . . . . . . 10 (dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋 → (dom (dom 𝑋 × ran 𝑋) × ran 𝑋) ⊆ (dom 𝑋 × ran 𝑋))
4543, 44ax-mp 5 . . . . . . . . 9 (dom (dom 𝑋 × ran 𝑋) × ran 𝑋) ⊆ (dom 𝑋 × ran 𝑋)
4642, 45sstri 3956 . . . . . . . 8 (𝑋 ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋)
4741, 46unssi 4154 . . . . . . 7 ((𝑋𝑋) ∪ (𝑋 ∘ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋)
4840, 47eqsstri 3993 . . . . . 6 (𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋)
49 coundi 6220 . . . . . . 7 ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) = (((dom 𝑋 × ran 𝑋) ∘ 𝑋) ∪ ((dom 𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋)))
50 cossxp 6245 . . . . . . . . 9 ((dom 𝑋 × ran 𝑋) ∘ 𝑋) ⊆ (dom 𝑋 × ran (dom 𝑋 × ran 𝑋))
51 rnxpss 6145 . . . . . . . . . 10 ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋
52 xpss2 5658 . . . . . . . . . 10 (ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 → (dom 𝑋 × ran (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋))
5351, 52ax-mp 5 . . . . . . . . 9 (dom 𝑋 × ran (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋)
5450, 53sstri 3956 . . . . . . . 8 ((dom 𝑋 × ran 𝑋) ∘ 𝑋) ⊆ (dom 𝑋 × ran 𝑋)
55 xptrrel 14946 . . . . . . . 8 ((dom 𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋)) ⊆ (dom 𝑋 × ran 𝑋)
5654, 55unssi 4154 . . . . . . 7 (((dom 𝑋 × ran 𝑋) ∘ 𝑋) ∪ ((dom 𝑋 × ran 𝑋) ∘ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋)
5749, 56eqsstri 3993 . . . . . 6 ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋)
5848, 57unssi 4154 . . . . 5 ((𝑋 ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ∪ ((dom 𝑋 × ran 𝑋) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))) ⊆ (dom 𝑋 × ran 𝑋)
5939, 58eqsstri 3993 . . . 4 ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (dom 𝑋 × ran 𝑋)
60 ssun2 4142 . . . 4 (dom 𝑋 × ran 𝑋) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))
6159, 60sstri 3956 . . 3 ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))
6261a1i 11 . 2 (𝑋𝑉 → ((𝑋 ∪ (dom 𝑋 × ran 𝑋)) ∘ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
6324, 32, 35, 37, 38, 62clcnvlem 43612 1 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  cdif 3911  cun 3912  wss 3914  c0 4296   cint 4910   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator