Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   GIF version

Theorem sxbrsigalem0 34276
Description: The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Distinct variable group:   𝑒,𝑓

Proof of Theorem sxbrsigalem0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unissb 4886 . . 3 ( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ) ↔ ∀𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))𝑧 ⊆ (ℝ × ℝ))
2 elun 4098 . . . 4 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ↔ (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
3 eqid 2731 . . . . . . . . 9 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
43rnmptss 7051 . . . . . . . 8 (∀𝑒 ∈ ℝ ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ))
5 pnfxr 11161 . . . . . . . . . . 11 +∞ ∈ ℝ*
6 icossre 13323 . . . . . . . . . . 11 ((𝑒 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑒[,)+∞) ⊆ ℝ)
75, 6mpan2 691 . . . . . . . . . 10 (𝑒 ∈ ℝ → (𝑒[,)+∞) ⊆ ℝ)
8 xpss1 5630 . . . . . . . . . 10 ((𝑒[,)+∞) ⊆ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
97, 8syl 17 . . . . . . . . 9 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
10 ovex 7374 . . . . . . . . . . 11 (𝑒[,)+∞) ∈ V
11 reex 11092 . . . . . . . . . . 11 ℝ ∈ V
1210, 11xpex 7681 . . . . . . . . . 10 ((𝑒[,)+∞) × ℝ) ∈ V
1312elpw 4549 . . . . . . . . 9 (((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) ↔ ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
149, 13sylibr 234 . . . . . . . 8 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ))
154, 14mprg 3053 . . . . . . 7 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ)
1615sseli 3925 . . . . . 6 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
1716elpwid 4554 . . . . 5 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ⊆ (ℝ × ℝ))
18 eqid 2731 . . . . . . . . 9 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
1918rnmptss 7051 . . . . . . . 8 (∀𝑓 ∈ ℝ (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ))
20 icossre 13323 . . . . . . . . . . 11 ((𝑓 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑓[,)+∞) ⊆ ℝ)
215, 20mpan2 691 . . . . . . . . . 10 (𝑓 ∈ ℝ → (𝑓[,)+∞) ⊆ ℝ)
22 xpss2 5631 . . . . . . . . . 10 ((𝑓[,)+∞) ⊆ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
24 ovex 7374 . . . . . . . . . . 11 (𝑓[,)+∞) ∈ V
2511, 24xpex 7681 . . . . . . . . . 10 (ℝ × (𝑓[,)+∞)) ∈ V
2625elpw 4549 . . . . . . . . 9 ((ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) ↔ (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2723, 26sylibr 234 . . . . . . . 8 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ))
2819, 27mprg 3053 . . . . . . 7 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ)
2928sseli 3925 . . . . . 6 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
3029elpwid 4554 . . . . 5 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ⊆ (ℝ × ℝ))
3117, 30jaoi 857 . . . 4 ((𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
322, 31sylbi 217 . . 3 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
331, 32mprgbir 3054 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ)
34 rexr 11153 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ℝ*)
355a1i 11 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → +∞ ∈ ℝ*)
36 ltpnf 13014 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) < +∞)
37 lbico1 13295 . . . . . . . . . . 11 (((1st𝑧) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (1st𝑧) < +∞) → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . 10 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3938anim1i 615 . . . . . . . . 9 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ))
4039anim2i 617 . . . . . . . 8 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
41 elxp7 7951 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)))
42 elxp7 7951 . . . . . . . 8 (𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
4340, 41, 423imtr4i 292 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ))
44 xp1st 7948 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
45 oveq1 7348 . . . . . . . . . 10 (𝑒 = (1st𝑧) → (𝑒[,)+∞) = ((1st𝑧)[,)+∞))
4645xpeq1d 5640 . . . . . . . . 9 (𝑒 = (1st𝑧) → ((𝑒[,)+∞) × ℝ) = (((1st𝑧)[,)+∞) × ℝ))
47 ovex 7374 . . . . . . . . . 10 ((1st𝑧)[,)+∞) ∈ V
4847, 11xpex 7681 . . . . . . . . 9 (((1st𝑧)[,)+∞) × ℝ) ∈ V
4946, 3, 48fvmpt 6924 . . . . . . . 8 ((1st𝑧) ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5044, 49syl 17 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5143, 50eleqtrrd 2834 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)))
52 elfvunirn 6847 . . . . . 6 (𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5351, 52syl 17 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5453ssriv 3933 . . . 4 (ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
55 ssun3 4125 . . . 4 ((ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
5654, 55ax-mp 5 . . 3 (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
57 uniun 4877 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5856, 57sseqtrri 3979 . 2 (ℝ × ℝ) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5933, 58eqssi 3946 1 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897  𝒫 cpw 4545   cuni 4854   class class class wbr 5086  cmpt 5167   × cxp 5609  ran crn 5612  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  cr 11000  +∞cpnf 11138  *cxr 11140   < clt 11141  [,)cico 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-ico 13246
This theorem is referenced by:  sxbrsigalem3  34277  sxbrsigalem2  34291
  Copyright terms: Public domain W3C validator