Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   GIF version

Theorem sxbrsigalem0 34235
Description: The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Distinct variable group:   𝑒,𝑓

Proof of Theorem sxbrsigalem0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unissb 4899 . . 3 ( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ) ↔ ∀𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))𝑧 ⊆ (ℝ × ℝ))
2 elun 4112 . . . 4 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ↔ (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
3 eqid 2729 . . . . . . . . 9 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
43rnmptss 7077 . . . . . . . 8 (∀𝑒 ∈ ℝ ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ))
5 pnfxr 11204 . . . . . . . . . . 11 +∞ ∈ ℝ*
6 icossre 13365 . . . . . . . . . . 11 ((𝑒 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑒[,)+∞) ⊆ ℝ)
75, 6mpan2 691 . . . . . . . . . 10 (𝑒 ∈ ℝ → (𝑒[,)+∞) ⊆ ℝ)
8 xpss1 5650 . . . . . . . . . 10 ((𝑒[,)+∞) ⊆ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
97, 8syl 17 . . . . . . . . 9 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
10 ovex 7402 . . . . . . . . . . 11 (𝑒[,)+∞) ∈ V
11 reex 11135 . . . . . . . . . . 11 ℝ ∈ V
1210, 11xpex 7709 . . . . . . . . . 10 ((𝑒[,)+∞) × ℝ) ∈ V
1312elpw 4563 . . . . . . . . 9 (((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) ↔ ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
149, 13sylibr 234 . . . . . . . 8 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ))
154, 14mprg 3050 . . . . . . 7 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ)
1615sseli 3939 . . . . . 6 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
1716elpwid 4568 . . . . 5 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ⊆ (ℝ × ℝ))
18 eqid 2729 . . . . . . . . 9 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
1918rnmptss 7077 . . . . . . . 8 (∀𝑓 ∈ ℝ (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ))
20 icossre 13365 . . . . . . . . . . 11 ((𝑓 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑓[,)+∞) ⊆ ℝ)
215, 20mpan2 691 . . . . . . . . . 10 (𝑓 ∈ ℝ → (𝑓[,)+∞) ⊆ ℝ)
22 xpss2 5651 . . . . . . . . . 10 ((𝑓[,)+∞) ⊆ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
24 ovex 7402 . . . . . . . . . . 11 (𝑓[,)+∞) ∈ V
2511, 24xpex 7709 . . . . . . . . . 10 (ℝ × (𝑓[,)+∞)) ∈ V
2625elpw 4563 . . . . . . . . 9 ((ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) ↔ (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2723, 26sylibr 234 . . . . . . . 8 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ))
2819, 27mprg 3050 . . . . . . 7 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ)
2928sseli 3939 . . . . . 6 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
3029elpwid 4568 . . . . 5 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ⊆ (ℝ × ℝ))
3117, 30jaoi 857 . . . 4 ((𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
322, 31sylbi 217 . . 3 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
331, 32mprgbir 3051 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ)
34 rexr 11196 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ℝ*)
355a1i 11 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → +∞ ∈ ℝ*)
36 ltpnf 13056 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) < +∞)
37 lbico1 13337 . . . . . . . . . . 11 (((1st𝑧) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (1st𝑧) < +∞) → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . 10 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3938anim1i 615 . . . . . . . . 9 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ))
4039anim2i 617 . . . . . . . 8 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
41 elxp7 7982 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)))
42 elxp7 7982 . . . . . . . 8 (𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
4340, 41, 423imtr4i 292 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ))
44 xp1st 7979 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
45 oveq1 7376 . . . . . . . . . 10 (𝑒 = (1st𝑧) → (𝑒[,)+∞) = ((1st𝑧)[,)+∞))
4645xpeq1d 5660 . . . . . . . . 9 (𝑒 = (1st𝑧) → ((𝑒[,)+∞) × ℝ) = (((1st𝑧)[,)+∞) × ℝ))
47 ovex 7402 . . . . . . . . . 10 ((1st𝑧)[,)+∞) ∈ V
4847, 11xpex 7709 . . . . . . . . 9 (((1st𝑧)[,)+∞) × ℝ) ∈ V
4946, 3, 48fvmpt 6950 . . . . . . . 8 ((1st𝑧) ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5044, 49syl 17 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5143, 50eleqtrrd 2831 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)))
52 elfvunirn 6872 . . . . . 6 (𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5351, 52syl 17 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5453ssriv 3947 . . . 4 (ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
55 ssun3 4139 . . . 4 ((ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
5654, 55ax-mp 5 . . 3 (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
57 uniun 4890 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5856, 57sseqtrri 3993 . 2 (ℝ × ℝ) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5933, 58eqssi 3960 1 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cr 11043  +∞cpnf 11181  *cxr 11183   < clt 11184  [,)cico 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288
This theorem is referenced by:  sxbrsigalem3  34236  sxbrsigalem2  34250
  Copyright terms: Public domain W3C validator