Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   GIF version

Theorem sxbrsigalem0 34236
Description: The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Distinct variable group:   𝑒,𝑓

Proof of Theorem sxbrsigalem0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unissb 4963 . . 3 ( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ) ↔ ∀𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))𝑧 ⊆ (ℝ × ℝ))
2 elun 4176 . . . 4 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ↔ (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
3 eqid 2740 . . . . . . . . 9 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
43rnmptss 7157 . . . . . . . 8 (∀𝑒 ∈ ℝ ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ))
5 pnfxr 11344 . . . . . . . . . . 11 +∞ ∈ ℝ*
6 icossre 13488 . . . . . . . . . . 11 ((𝑒 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑒[,)+∞) ⊆ ℝ)
75, 6mpan2 690 . . . . . . . . . 10 (𝑒 ∈ ℝ → (𝑒[,)+∞) ⊆ ℝ)
8 xpss1 5719 . . . . . . . . . 10 ((𝑒[,)+∞) ⊆ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
97, 8syl 17 . . . . . . . . 9 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
10 ovex 7481 . . . . . . . . . . 11 (𝑒[,)+∞) ∈ V
11 reex 11275 . . . . . . . . . . 11 ℝ ∈ V
1210, 11xpex 7788 . . . . . . . . . 10 ((𝑒[,)+∞) × ℝ) ∈ V
1312elpw 4626 . . . . . . . . 9 (((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) ↔ ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
149, 13sylibr 234 . . . . . . . 8 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ))
154, 14mprg 3073 . . . . . . 7 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ)
1615sseli 4004 . . . . . 6 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
1716elpwid 4631 . . . . 5 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ⊆ (ℝ × ℝ))
18 eqid 2740 . . . . . . . . 9 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
1918rnmptss 7157 . . . . . . . 8 (∀𝑓 ∈ ℝ (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ))
20 icossre 13488 . . . . . . . . . . 11 ((𝑓 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑓[,)+∞) ⊆ ℝ)
215, 20mpan2 690 . . . . . . . . . 10 (𝑓 ∈ ℝ → (𝑓[,)+∞) ⊆ ℝ)
22 xpss2 5720 . . . . . . . . . 10 ((𝑓[,)+∞) ⊆ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
24 ovex 7481 . . . . . . . . . . 11 (𝑓[,)+∞) ∈ V
2511, 24xpex 7788 . . . . . . . . . 10 (ℝ × (𝑓[,)+∞)) ∈ V
2625elpw 4626 . . . . . . . . 9 ((ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) ↔ (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2723, 26sylibr 234 . . . . . . . 8 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ))
2819, 27mprg 3073 . . . . . . 7 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ)
2928sseli 4004 . . . . . 6 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
3029elpwid 4631 . . . . 5 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ⊆ (ℝ × ℝ))
3117, 30jaoi 856 . . . 4 ((𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
322, 31sylbi 217 . . 3 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
331, 32mprgbir 3074 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ)
34 rexr 11336 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ℝ*)
355a1i 11 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → +∞ ∈ ℝ*)
36 ltpnf 13183 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) < +∞)
37 lbico1 13461 . . . . . . . . . . 11 (((1st𝑧) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (1st𝑧) < +∞) → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3834, 35, 36, 37syl3anc 1371 . . . . . . . . . 10 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3938anim1i 614 . . . . . . . . 9 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ))
4039anim2i 616 . . . . . . . 8 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
41 elxp7 8065 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)))
42 elxp7 8065 . . . . . . . 8 (𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
4340, 41, 423imtr4i 292 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ))
44 xp1st 8062 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
45 oveq1 7455 . . . . . . . . . 10 (𝑒 = (1st𝑧) → (𝑒[,)+∞) = ((1st𝑧)[,)+∞))
4645xpeq1d 5729 . . . . . . . . 9 (𝑒 = (1st𝑧) → ((𝑒[,)+∞) × ℝ) = (((1st𝑧)[,)+∞) × ℝ))
47 ovex 7481 . . . . . . . . . 10 ((1st𝑧)[,)+∞) ∈ V
4847, 11xpex 7788 . . . . . . . . 9 (((1st𝑧)[,)+∞) × ℝ) ∈ V
4946, 3, 48fvmpt 7029 . . . . . . . 8 ((1st𝑧) ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5044, 49syl 17 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5143, 50eleqtrrd 2847 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)))
52 elfvunirn 6952 . . . . . 6 (𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5351, 52syl 17 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5453ssriv 4012 . . . 4 (ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
55 ssun3 4203 . . . 4 ((ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
5654, 55ax-mp 5 . . 3 (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
57 uniun 4954 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5856, 57sseqtrri 4046 . 2 (ℝ × ℝ) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5933, 58eqssi 4025 1 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413
This theorem is referenced by:  sxbrsigalem3  34237  sxbrsigalem2  34251
  Copyright terms: Public domain W3C validator