Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   GIF version

Theorem sxbrsigalem0 32960
Description: The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Distinct variable group:   𝑒,𝑓

Proof of Theorem sxbrsigalem0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unissb 4905 . . 3 ( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ) ↔ ∀𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))𝑧 ⊆ (ℝ × ℝ))
2 elun 4113 . . . 4 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ↔ (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
3 eqid 2731 . . . . . . . . 9 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
43rnmptss 7075 . . . . . . . 8 (∀𝑒 ∈ ℝ ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ))
5 pnfxr 11218 . . . . . . . . . . 11 +∞ ∈ ℝ*
6 icossre 13355 . . . . . . . . . . 11 ((𝑒 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑒[,)+∞) ⊆ ℝ)
75, 6mpan2 689 . . . . . . . . . 10 (𝑒 ∈ ℝ → (𝑒[,)+∞) ⊆ ℝ)
8 xpss1 5657 . . . . . . . . . 10 ((𝑒[,)+∞) ⊆ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
97, 8syl 17 . . . . . . . . 9 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
10 ovex 7395 . . . . . . . . . . 11 (𝑒[,)+∞) ∈ V
11 reex 11151 . . . . . . . . . . 11 ℝ ∈ V
1210, 11xpex 7692 . . . . . . . . . 10 ((𝑒[,)+∞) × ℝ) ∈ V
1312elpw 4569 . . . . . . . . 9 (((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) ↔ ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
149, 13sylibr 233 . . . . . . . 8 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ))
154, 14mprg 3066 . . . . . . 7 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ)
1615sseli 3943 . . . . . 6 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
1716elpwid 4574 . . . . 5 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ⊆ (ℝ × ℝ))
18 eqid 2731 . . . . . . . . 9 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
1918rnmptss 7075 . . . . . . . 8 (∀𝑓 ∈ ℝ (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ))
20 icossre 13355 . . . . . . . . . . 11 ((𝑓 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑓[,)+∞) ⊆ ℝ)
215, 20mpan2 689 . . . . . . . . . 10 (𝑓 ∈ ℝ → (𝑓[,)+∞) ⊆ ℝ)
22 xpss2 5658 . . . . . . . . . 10 ((𝑓[,)+∞) ⊆ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
24 ovex 7395 . . . . . . . . . . 11 (𝑓[,)+∞) ∈ V
2511, 24xpex 7692 . . . . . . . . . 10 (ℝ × (𝑓[,)+∞)) ∈ V
2625elpw 4569 . . . . . . . . 9 ((ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) ↔ (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2723, 26sylibr 233 . . . . . . . 8 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ))
2819, 27mprg 3066 . . . . . . 7 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ)
2928sseli 3943 . . . . . 6 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
3029elpwid 4574 . . . . 5 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ⊆ (ℝ × ℝ))
3117, 30jaoi 855 . . . 4 ((𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
322, 31sylbi 216 . . 3 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
331, 32mprgbir 3067 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ)
34 rexr 11210 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ℝ*)
355a1i 11 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → +∞ ∈ ℝ*)
36 ltpnf 13050 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) < +∞)
37 lbico1 13328 . . . . . . . . . . 11 (((1st𝑧) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (1st𝑧) < +∞) → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3834, 35, 36, 37syl3anc 1371 . . . . . . . . . 10 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3938anim1i 615 . . . . . . . . 9 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ))
4039anim2i 617 . . . . . . . 8 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
41 elxp7 7961 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)))
42 elxp7 7961 . . . . . . . 8 (𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
4340, 41, 423imtr4i 291 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ))
44 xp1st 7958 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
45 oveq1 7369 . . . . . . . . . 10 (𝑒 = (1st𝑧) → (𝑒[,)+∞) = ((1st𝑧)[,)+∞))
4645xpeq1d 5667 . . . . . . . . 9 (𝑒 = (1st𝑧) → ((𝑒[,)+∞) × ℝ) = (((1st𝑧)[,)+∞) × ℝ))
47 ovex 7395 . . . . . . . . . 10 ((1st𝑧)[,)+∞) ∈ V
4847, 11xpex 7692 . . . . . . . . 9 (((1st𝑧)[,)+∞) × ℝ) ∈ V
4946, 3, 48fvmpt 6953 . . . . . . . 8 ((1st𝑧) ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5044, 49syl 17 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5143, 50eleqtrrd 2835 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)))
52 elfvunirn 6879 . . . . . 6 (𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5351, 52syl 17 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5453ssriv 3951 . . . 4 (ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
55 ssun3 4139 . . . 4 ((ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
5654, 55ax-mp 5 . . 3 (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
57 uniun 4896 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5856, 57sseqtrri 3984 . 2 (ℝ × ℝ) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5933, 58eqssi 3963 1 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 845   = wceq 1541  wcel 2106  Vcvv 3446  cun 3911  wss 3913  𝒫 cpw 4565   cuni 4870   class class class wbr 5110  cmpt 5193   × cxp 5636  ran crn 5639  cfv 6501  (class class class)co 7362  1st c1st 7924  2nd c2nd 7925  cr 11059  +∞cpnf 11195  *cxr 11197   < clt 11198  [,)cico 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-pre-lttri 11134  ax-pre-lttrn 11135
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-ico 13280
This theorem is referenced by:  sxbrsigalem3  32961  sxbrsigalem2  32975
  Copyright terms: Public domain W3C validator