Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem97 Structured version   Visualization version   GIF version

Theorem fourierdlem97 46232
Description: 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem97.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem97.g 𝐺 = (ℝ D 𝐹)
fourierdlem97.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem97.a (𝜑𝐵 ∈ ℝ)
fourierdlem97.b (𝜑𝐴 ∈ ℝ)
fourierdlem97.t 𝑇 = (𝐵𝐴)
fourierdlem97.m (𝜑𝑀 ∈ ℕ)
fourierdlem97.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem97.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem97.qcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem97.c (𝜑𝐶 ∈ ℝ)
fourierdlem97.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem97.j (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
fourierdlem97.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
fourierdlem97.h 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
Assertion
Ref Expression
fourierdlem97 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Distinct variable groups:   𝑇,𝑖,𝑠,𝑥   𝐷,𝑖,𝑥,𝑦   𝑖,𝐽,𝑠,𝑥   𝐶,𝑖,𝑝   𝑄,   ,𝑀,𝑖,𝑥   𝑥,𝐶,𝑦   𝑄,𝑘   𝑥,𝐵   𝑉,𝑝   𝑖,𝐻,𝑠,𝑥   𝐷,𝑚,𝑝   𝑄,𝑔,   𝑇,   𝜑,𝑠   𝑀,𝑠   𝜑,,𝑦   𝑄,𝑚,𝑝,𝑦,𝑘   𝑥,𝐹,𝑦   𝑇,𝑔,𝑘,𝑦   𝐴,𝑖,𝑚,𝑝   𝑇,𝑚   𝜑,𝑖,𝑥   𝑇,𝑝   𝑖,𝑉,𝑘,𝑥   𝐶,𝑚   𝜑,𝑔   ,𝑉   ,𝐽,𝑘   𝑚,𝑀,𝑝   𝑉,𝑠   𝑦,𝐺   𝐵,𝑖,𝑝   𝑄,𝑖,𝑠,𝑥   𝐶,𝑔   𝐺,𝑠   𝑔,𝑉   𝐵,𝑚   𝐹,𝑠   𝐷,𝑔   𝑖,𝐺   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑝)   𝐴(𝑦,𝑔,,𝑘,𝑠)   𝐵(𝑦,𝑔,,𝑘,𝑠)   𝐶(,𝑘,𝑠)   𝐷(,𝑘,𝑠)   𝑃(𝑥,𝑦,𝑔,,𝑖,𝑘,𝑚,𝑠,𝑝)   𝐹(𝑔,,𝑖,𝑘,𝑚,𝑝)   𝐺(𝑥,𝑔,,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑔,,𝑘,𝑚,𝑝)   𝐽(𝑦,𝑔,𝑚,𝑝)   𝑀(𝑦,𝑔,𝑘)   𝑉(𝑦,𝑚)

Proof of Theorem fourierdlem97
Dummy variables 𝑓 𝑙 𝑡 𝑢 𝑤 𝑧 𝑒 𝑗 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13424 . . . . . . . 8 ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ
21a1i 11 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ)
32sselda 3958 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ ℝ)
4 iftrue 4506 . . . . . . . . . . 11 (𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
54adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
6 fourierdlem97.f . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶ℝ)
7 ssid 3981 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ
8 dvfre 25907 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
96, 7, 8sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10 fourierdlem97.g . . . . . . . . . . . . . 14 𝐺 = (ℝ D 𝐹)
1110feq1i 6697 . . . . . . . . . . . . 13 (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
129, 11sylibr 234 . . . . . . . . . . . 12 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
14 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ dom 𝐺𝑠 ∈ dom 𝐺)
1510dmeqi 5884 . . . . . . . . . . . . 13 dom 𝐺 = dom (ℝ D 𝐹)
1614, 15eleqtrdi 2844 . . . . . . . . . . . 12 (𝑠 ∈ dom 𝐺𝑠 ∈ dom (ℝ D 𝐹))
1716adantl 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝑠 ∈ dom (ℝ D 𝐹))
1813, 17ffvelcdmd 7075 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → (𝐺𝑠) ∈ ℝ)
195, 18eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2019adantlr 715 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
21 iffalse 4509 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
22 0red 11238 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ)
2321, 22eqeltrd 2834 . . . . . . . . 9 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2423adantl 481 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2520, 24pm2.61dan 812 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
263, 25syldan 591 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
27 fourierdlem97.h . . . . . . 7 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
2827fvmpt2 6997 . . . . . 6 ((𝑠 ∈ ℝ ∧ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
293, 26, 28syl2anc 584 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
30 fourierdlem97.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
31 fourierdlem97.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
32 fourierdlem97.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
33 fourierdlem97.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem97.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
35 fourierdlem97.d . . . . . . . . . . 11 (𝜑𝐷 ∈ (𝐶(,)+∞))
36 elioore 13392 . . . . . . . . . . 11 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
3735, 36syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3834rexrd 11285 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ*)
39 pnfxr 11289 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4039a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
41 ioogtlb 45524 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (𝐶(,)+∞)) → 𝐶 < 𝐷)
4238, 40, 35, 41syl3anc 1373 . . . . . . . . . 10 (𝜑𝐶 < 𝐷)
43 oveq1 7412 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 + ( · 𝑇)) = (𝑥 + ( · 𝑇)))
4443eleq1d 2819 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4544rexbidv 3164 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4645cbvrabv 3426 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄}
4746uneq2i 4140 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄})
48 oveq1 7412 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
4948oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
5049eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5150cbvrexvw 3221 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄)
5251a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5352rabbiia 3419 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
5453uneq2i 4140 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
55 oveq1 7412 . . . . . . . . . . . . . . . . . . 19 (𝑙 = → (𝑙 · 𝑇) = ( · 𝑇))
5655oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + ( · 𝑇)))
5756eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
5857cbvrexvw 3221 . . . . . . . . . . . . . . . 16 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
5958a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
6059rabbiia 3419 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
6160uneq2i 4140 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6254, 61eqtri 2758 . . . . . . . . . . . 12 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6362fveq2i 6879 . . . . . . . . . . 11 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))
6463oveq1i 7415 . . . . . . . . . 10 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})) − 1)
65 fourierdlem97.v . . . . . . . . . 10 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
66 fourierdlem97.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
67 oveq1 7412 . . . . . . . . . . . . . 14 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
6867oveq2d 7421 . . . . . . . . . . . . 13 (𝑘 = → ((𝑄‘0) + (𝑘 · 𝑇)) = ((𝑄‘0) + ( · 𝑇)))
6968breq1d 5129 . . . . . . . . . . . 12 (𝑘 = → (((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)))
7069cbvrabv 3426 . . . . . . . . . . 11 {𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)} = { ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}
7170supeq1i 9459 . . . . . . . . . 10 sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({ ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
72 fveq2 6876 . . . . . . . . . . . . . 14 (𝑗 = 𝑒 → (𝑄𝑗) = (𝑄𝑒))
7372oveq1d 7420 . . . . . . . . . . . . 13 (𝑗 = 𝑒 → ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) = ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)))
7473breq1d 5129 . . . . . . . . . . . 12 (𝑗 = 𝑒 → (((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)))
7574cbvrabv 3426 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)} = {𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}
7675supeq1i 9459 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
7730, 31, 32, 33, 34, 37, 42, 47, 64, 65, 66, 71, 76fourierdlem64 46199 . . . . . . . . 9 (𝜑 → ((sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ (0..^𝑀) ∧ sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))))
7877simprd 495 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
79 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝜑)
80 simpl2l 1227 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑖 ∈ (0..^𝑀))
81 fourierdlem97.qcn . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
82 cncff 24837 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
84 ffun 6709 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:dom (ℝ D 𝐹)⟶ℝ → Fun 𝐺)
8512, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
8685adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → Fun 𝐺)
87 ffvresb 7115 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8983, 88mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9089r19.21bi 3234 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9190simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ dom 𝐺)
9291ralrimiva 3132 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
93 dfss3 3947 . . . . . . . . . . . . . . . 16 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
9492, 93sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
9579, 80, 94syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
96 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ))
9779, 96jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)))
98 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
99 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))))
10098, 99sseldd 3959 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
10131fourierdlem2 46138 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10232, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10333, 102mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
104103simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
105 elmapi 8863 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(0...𝑀)⟶ℝ)
107106adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 13692 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111110rexrd 11285 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
112111adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ*)
113112adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
114 fzofzp1 13780 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
115114adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
116107, 115ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
117116adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
118117adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
119118rexrd 11285 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
120 elioore 13392 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → 𝑡 ∈ ℝ)
121120adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ ℝ)
122 zre 12592 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℤ → 𝑙 ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
124123ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑙 ∈ ℝ)
125 fourierdlem97.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
126 fourierdlem97.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
127125, 126resubcld 11665 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
12830, 127eqeltrid 2838 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
129128ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑇 ∈ ℝ)
130124, 129remulcld 11265 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑙 · 𝑇) ∈ ℝ)
131121, 130resubcld 11665 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ℝ)
132110adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ)
133122ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑙 ∈ ℝ)
134128adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑇 ∈ ℝ)
135133, 134remulcld 11265 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑙 · 𝑇) ∈ ℝ)
136132, 135readdcld 11264 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ)
137136rexrd 11285 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
138137adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
139117, 135readdcld 11264 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ)
140139rexrd 11285 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
141140adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
142 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
143 ioogtlb 45524 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
144138, 141, 142, 143syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
145132adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
146145, 130, 121ltaddsubd 11837 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡 ↔ (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇))))
147144, 146mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇)))
148 iooltub 45539 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
149138, 141, 142, 148syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
150121, 130, 118ltsubaddd 11833 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)) ↔ 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
151149, 150mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)))
152113, 119, 131, 147, 151eliood 45527 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15397, 100, 152syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15495, 153sseldd 3959 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)
155 elioore 13392 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) → 𝑡 ∈ ℝ)
156 recn 11219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
157156adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
158 zcn 12593 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℤ → 𝑙 ∈ ℂ)
159158ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑙 ∈ ℂ)
160128recnd 11263 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ ℂ)
161160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℂ)
162159, 161mulcld 11255 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝑙 · 𝑇) ∈ ℂ)
163157, 162npcand 11598 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) = 𝑡)
164163eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
165164adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
166 ovex 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 − (𝑙 · 𝑇)) ∈ V
167 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 ∈ dom 𝐺 ↔ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺))
168167anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) ↔ ((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)))
169 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 + (𝑙 · 𝑇)) = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
170169eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ↔ ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺))
171169fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))))
172 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺𝑠) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))
173171, 172eqeq12d 2751 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠) ↔ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
174170, 173anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)) ↔ (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))))
175168, 174imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠))) ↔ (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))))
176 ax-resscn 11186 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℂ
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ℝ ⊆ ℂ)
1786, 177fssd 6723 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:ℝ⟶ℂ)
179178adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
180122adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
181128adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑇 ∈ ℝ)
182180, 181remulcld 11265 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → (𝑙 · 𝑇) ∈ ℝ)
183178ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
184128ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
185 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑙 ∈ ℤ)
186 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
187 fourierdlem97.fper . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
188187ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
189183, 184, 185, 186, 188fperiodmul 45333 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + (𝑙 · 𝑇))) = (𝐹𝑠))
190179, 182, 189, 10fperdvper 45948 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)))
191166, 175, 190vtocl 3537 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
192191simpld 494 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
193192adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
194165, 193eqeltrd 2834 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 ∈ dom 𝐺)
195194ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
196155, 195sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
197196adantlrl 720 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
1981973adantl3 1169 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
199154, 198mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ dom 𝐺)
200199ralrimiva 3132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
201 dfss3 3947 . . . . . . . . . . 11 (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺 ↔ ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
202200, 201sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
2032023exp 1119 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)))
204203rexlimdvv 3197 . . . . . . . 8 (𝜑 → (∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺))
20578, 204mpd 15 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
206205sselda 3958 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ dom 𝐺)
207206iftrued 4508 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
20829, 207eqtr2d 2771 . . . 4 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐺𝑠) = (𝐻𝑠))
209208mpteq2dva 5214 . . 3 (𝜑 → (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
21015a1i 11 . . . . . 6 (𝜑 → dom 𝐺 = dom (ℝ D 𝐹))
211210feq2d 6692 . . . . 5 (𝜑 → (𝐺:dom 𝐺⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
21212, 211mpbird 257 . . . 4 (𝜑𝐺:dom 𝐺⟶ℝ)
213212, 205feqresmpt 6948 . . 3 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)))
21425, 27fmptd 7104 . . . 4 (𝜑𝐻:ℝ⟶ℝ)
215214, 2feqresmpt 6948 . . 3 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
216209, 213, 2153eqtr4d 2780 . 2 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))))
217214, 177fssd 6723 . . 3 (𝜑𝐻:ℝ⟶ℂ)
21827a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
219 eleq1 2822 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝑠 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
220 fveq2 6876 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝐺𝑠) = (𝐺‘(𝑥 + 𝑇)))
221219, 220ifbieq1d 4525 . . . . . . . 8 (𝑠 = (𝑥 + 𝑇) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
222178, 128, 187, 10fperdvper 45948 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
223222simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
224223iftrued 4508 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = (𝐺‘(𝑥 + 𝑇)))
225221, 224sylan9eqr 2792 . . . . . . 7 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
226225adantllr 719 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
227 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
228128adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
229227, 228readdcld 11264 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ)
230229adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
231212ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐺:dom 𝐺⟶ℝ)
232223adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
233231, 232ffvelcdmd 7075 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) ∈ ℝ)
234218, 226, 230, 233fvmptd 6993 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
235222simprd 495 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
236235adantlr 715 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
237 eleq1 2822 . . . . . . . . 9 (𝑠 = 𝑥 → (𝑠 ∈ dom 𝐺𝑥 ∈ dom 𝐺))
238 fveq2 6876 . . . . . . . . 9 (𝑠 = 𝑥 → (𝐺𝑠) = (𝐺𝑥))
239237, 238ifbieq1d 4525 . . . . . . . 8 (𝑠 = 𝑥 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
240239adantl 481 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
241 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
242 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
243242iftrued 4508 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
244212ffvelcdmda 7074 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
245243, 244eqeltrd 2834 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
246245adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
247218, 240, 241, 246fvmptd 6993 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
248 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
249248iftrued 4508 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
250247, 249eqtr2d 2771 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐻𝑥))
251234, 236, 2503eqtrd 2774 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
252229recnd 11263 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℂ)
253228recnd 11263 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
254252, 253negsubd 11600 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) + -𝑇) = ((𝑥 + 𝑇) − 𝑇))
255227recnd 11263 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
256255, 253pncand 11595 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
257254, 256eqtr2d 2771 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
258257adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
259 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
260 simpll 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝜑)
261260, 259jca 511 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺))
262 eleq1 2822 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → (𝑦 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
263262anbi2d 630 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → ((𝜑𝑦 ∈ dom 𝐺) ↔ (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺)))
264 oveq1 7412 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝑦 + -𝑇) = ((𝑥 + 𝑇) + -𝑇))
265264eleq1d 2819 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝑦 + -𝑇) ∈ dom 𝐺 ↔ ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺))
266264fveq2d 6880 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺‘(𝑦 + -𝑇)) = (𝐺‘((𝑥 + 𝑇) + -𝑇)))
267 fveq2 6876 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺𝑦) = (𝐺‘(𝑥 + 𝑇)))
268266, 267eqeq12d 2751 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦) ↔ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
269265, 268anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → (((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)) ↔ (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
270263, 269imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥 + 𝑇) → (((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦))) ↔ ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))))
271128renegcld 11664 . . . . . . . . . . . 12 (𝜑 → -𝑇 ∈ ℝ)
272160mulm1d 11689 . . . . . . . . . . . . . . . . 17 (𝜑 → (-1 · 𝑇) = -𝑇)
273272eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑇 = (-1 · 𝑇))
274273adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → -𝑇 = (-1 · 𝑇))
275274oveq2d 7421 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝑦 + -𝑇) = (𝑦 + (-1 · 𝑇)))
276275fveq2d 6880 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹‘(𝑦 + (-1 · 𝑇))))
277178adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
278128adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
279 1zzd 12623 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
280279znegcld 12699 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → -1 ∈ ℤ)
281 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
282187adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
283277, 278, 280, 281, 282fperiodmul 45333 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + (-1 · 𝑇))) = (𝐹𝑦))
284276, 283eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹𝑦))
285178, 271, 284, 10fperdvper 45948 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)))
286270, 285vtoclg 3533 . . . . . . . . . 10 ((𝑥 + 𝑇) ∈ dom 𝐺 → ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
287259, 261, 286sylc 65 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
288287simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺)
289258, 288eqeltrd 2834 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
290289stoic1a 1772 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ (𝑥 + 𝑇) ∈ dom 𝐺)
291290iffalsed 4511 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = 0)
29227a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
293221adantl 481 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
294229adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
295 0red 11238 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 0 ∈ ℝ)
296291, 295eqeltrd 2834 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) ∈ ℝ)
297292, 293, 294, 296fvmptd 6993 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
298 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ 𝑥 ∈ dom 𝐺)
299298iffalsed 4511 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = 0)
300239, 299sylan9eqr 2792 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
301 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
302292, 300, 301, 295fvmptd 6993 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = 0)
303291, 297, 3023eqtr4d 2780 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
304251, 303pm2.61dan 812 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
305 elioore 13392 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
306305adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
307305, 25sylan2 593 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
308306, 307, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
309308adantlr 715 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
31091iftrued 4508 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
311309, 310eqtrd 2770 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (𝐺𝑠))
312311mpteq2dva 5214 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
313214adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:ℝ⟶ℝ)
314 ioossre 13424 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
315314a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
316313, 315feqresmpt 6948 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
317212adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:dom 𝐺⟶ℝ)
318317, 94feqresmpt 6948 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
319312, 316, 3183eqtr4d 2780 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
320319, 81eqeltrd 2834 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
321 eqid 2735 . . 3 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
322 oveq1 7412 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 + (𝑙 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
323322eleq1d 2819 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
324323rexbidv 3164 . . . . . 6 (𝑧 = 𝑦 → (∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
325324cbvrabv 3426 . . . . 5 {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
326325uneq2i 4140 . . . 4 ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
327326eqcomi 2744 . . 3 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄})
32854fveq2i 6879 . . . 4 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))
329328oveq1i 7415 . . 3 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)
330 isoeq5 7314 . . . . . 6 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
33161, 330ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
332331iotabii 6516 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
333 isoeq1 7310 . . . . 5 (𝑓 = 𝑔 → (𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))))
334333cbviotavw 6492 . . . 4 (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
335332, 334, 653eqtr4ri 2769 . . 3 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
336 id 22 . . . . 5 (𝑣 = 𝑥𝑣 = 𝑥)
337 oveq2 7413 . . . . . . . 8 (𝑣 = 𝑥 → (𝐵𝑣) = (𝐵𝑥))
338337oveq1d 7420 . . . . . . 7 (𝑣 = 𝑥 → ((𝐵𝑣) / 𝑇) = ((𝐵𝑥) / 𝑇))
339338fveq2d 6880 . . . . . 6 (𝑣 = 𝑥 → (⌊‘((𝐵𝑣) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
340339oveq1d 7420 . . . . 5 (𝑣 = 𝑥 → ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
341336, 340oveq12d 7423 . . . 4 (𝑣 = 𝑥 → (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
342341cbvmptv 5225 . . 3 (𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
343 eqeq1 2739 . . . . 5 (𝑢 = 𝑧 → (𝑢 = 𝐵𝑧 = 𝐵))
344 id 22 . . . . 5 (𝑢 = 𝑧𝑢 = 𝑧)
345343, 344ifbieq2d 4527 . . . 4 (𝑢 = 𝑧 → if(𝑢 = 𝐵, 𝐴, 𝑢) = if(𝑧 = 𝐵, 𝐴, 𝑧))
346345cbvmptv 5225 . . 3 (𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢)) = (𝑧 ∈ (𝐴(,]𝐵) ↦ if(𝑧 = 𝐵, 𝐴, 𝑧))
347 eqid 2735 . . 3 ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))) = ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))
348 eqid 2735 . . 3 (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) = (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))
349 eqid 2735 . . 3 (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))))) = (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))))
350 fveq2 6876 . . . . . . . 8 (𝑖 = 𝑡 → (𝑄𝑖) = (𝑄𝑡))
351350breq1d 5129 . . . . . . 7 (𝑖 = 𝑡 → ((𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))))
352351cbvrabv 3426 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}
353 fveq2 6876 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))
354353fveq2d 6880 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)))
355354eqcomd 2741 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)))
356355breq2d 5131 . . . . . . 7 (𝑤 = 𝑥 → ((𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))))
357356rabbidv 3423 . . . . . 6 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))})
358352, 357eqtr2id 2783 . . . . 5 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))})
359358supeq1d 9458 . . . 4 (𝑤 = 𝑥 → sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
360359cbvmptv 5225 . . 3 (𝑤 ∈ ℝ ↦ sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
36131, 30, 32, 33, 217, 304, 320, 34, 35, 321, 327, 329, 335, 342, 346, 66, 347, 348, 349, 360fourierdlem90 46225 . 2 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
362216, 361eqeltrd 2834 1 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cun 3924  wss 3926  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  cio 6482  Fun wfun 6525  wf 6527  cfv 6531   Isom wiso 6532  (class class class)co 7405  m cmap 8840  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  cz 12588  (,)cioo 13362  (,]cioc 13363  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  cfl 13807  chash 14348  cnccncf 24820   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  fourierdlem112  46247
  Copyright terms: Public domain W3C validator