Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem97 Structured version   Visualization version   GIF version

Theorem fourierdlem97 44434
Description: 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem97.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem97.g 𝐺 = (ℝ D 𝐹)
fourierdlem97.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem97.a (𝜑𝐵 ∈ ℝ)
fourierdlem97.b (𝜑𝐴 ∈ ℝ)
fourierdlem97.t 𝑇 = (𝐵𝐴)
fourierdlem97.m (𝜑𝑀 ∈ ℕ)
fourierdlem97.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem97.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem97.qcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem97.c (𝜑𝐶 ∈ ℝ)
fourierdlem97.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem97.j (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
fourierdlem97.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
fourierdlem97.h 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
Assertion
Ref Expression
fourierdlem97 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑦,𝐶,𝑔   𝐶,𝑖,𝑥,𝑦   𝐶,𝑚,𝑝,𝑦   𝑦,𝐷,𝑔   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝐹,𝑠,𝑥   𝑦,𝐹   𝑖,𝐺,𝑠   𝑦,𝐺   𝑖,𝐻,𝑠,𝑥   ,𝐽,𝑘,𝑖,𝑥   𝐽,𝑠   ,𝑀,𝑖,𝑥   𝑚,𝑀,𝑝   𝑀,𝑠   𝑄,,𝑘,𝑔,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝,𝑘   𝑄,𝑠   𝑇,,𝑘,𝑔,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑇,𝑠   ,𝑉,𝑘,𝑔   𝑖,𝑉,𝑥   𝑉,𝑝   𝑉,𝑠   𝜑,,𝑦,𝑔   𝜑,𝑖,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑝)   𝐴(𝑦,𝑔,,𝑘,𝑠)   𝐵(𝑦,𝑔,,𝑘,𝑠)   𝐶(,𝑘,𝑠)   𝐷(,𝑘,𝑠)   𝑃(𝑥,𝑦,𝑔,,𝑖,𝑘,𝑚,𝑠,𝑝)   𝐹(𝑔,,𝑖,𝑘,𝑚,𝑝)   𝐺(𝑥,𝑔,,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑔,,𝑘,𝑚,𝑝)   𝐽(𝑦,𝑔,𝑚,𝑝)   𝑀(𝑦,𝑔,𝑘)   𝑉(𝑦,𝑚)

Proof of Theorem fourierdlem97
Dummy variables 𝑓 𝑙 𝑡 𝑢 𝑤 𝑧 𝑣 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13325 . . . . . . . 8 ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ
21a1i 11 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ)
32sselda 3944 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ ℝ)
4 iftrue 4492 . . . . . . . . . . 11 (𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
54adantl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
6 fourierdlem97.f . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶ℝ)
7 ssid 3966 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ
8 dvfre 25315 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
96, 7, 8sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10 fourierdlem97.g . . . . . . . . . . . . . 14 𝐺 = (ℝ D 𝐹)
1110feq1i 6659 . . . . . . . . . . . . 13 (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
129, 11sylibr 233 . . . . . . . . . . . 12 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
14 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ dom 𝐺𝑠 ∈ dom 𝐺)
1510dmeqi 5860 . . . . . . . . . . . . 13 dom 𝐺 = dom (ℝ D 𝐹)
1614, 15eleqtrdi 2848 . . . . . . . . . . . 12 (𝑠 ∈ dom 𝐺𝑠 ∈ dom (ℝ D 𝐹))
1716adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝑠 ∈ dom (ℝ D 𝐹))
1813, 17ffvelcdmd 7036 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → (𝐺𝑠) ∈ ℝ)
195, 18eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2019adantlr 713 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
21 iffalse 4495 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
22 0red 11158 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ)
2321, 22eqeltrd 2838 . . . . . . . . 9 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2423adantl 482 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2520, 24pm2.61dan 811 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
263, 25syldan 591 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
27 fourierdlem97.h . . . . . . 7 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
2827fvmpt2 6959 . . . . . 6 ((𝑠 ∈ ℝ ∧ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
293, 26, 28syl2anc 584 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
30 fourierdlem97.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
31 fourierdlem97.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
32 fourierdlem97.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
33 fourierdlem97.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem97.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
35 fourierdlem97.d . . . . . . . . . . 11 (𝜑𝐷 ∈ (𝐶(,)+∞))
36 elioore 13294 . . . . . . . . . . 11 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
3735, 36syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3834rexrd 11205 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ*)
39 pnfxr 11209 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4039a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
41 ioogtlb 43723 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (𝐶(,)+∞)) → 𝐶 < 𝐷)
4238, 40, 35, 41syl3anc 1371 . . . . . . . . . 10 (𝜑𝐶 < 𝐷)
43 oveq1 7364 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 + ( · 𝑇)) = (𝑥 + ( · 𝑇)))
4443eleq1d 2822 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4544rexbidv 3175 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4645cbvrabv 3417 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄}
4746uneq2i 4120 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄})
48 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
4948oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
5049eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5150cbvrexvw 3226 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄)
5251a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5352rabbiia 3411 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
5453uneq2i 4120 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
55 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (𝑙 = → (𝑙 · 𝑇) = ( · 𝑇))
5655oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + ( · 𝑇)))
5756eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
5857cbvrexvw 3226 . . . . . . . . . . . . . . . 16 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
5958a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
6059rabbiia 3411 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
6160uneq2i 4120 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6254, 61eqtri 2764 . . . . . . . . . . . 12 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6362fveq2i 6845 . . . . . . . . . . 11 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))
6463oveq1i 7367 . . . . . . . . . 10 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})) − 1)
65 fourierdlem97.v . . . . . . . . . 10 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
66 fourierdlem97.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
67 oveq1 7364 . . . . . . . . . . . . . 14 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
6867oveq2d 7373 . . . . . . . . . . . . 13 (𝑘 = → ((𝑄‘0) + (𝑘 · 𝑇)) = ((𝑄‘0) + ( · 𝑇)))
6968breq1d 5115 . . . . . . . . . . . 12 (𝑘 = → (((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)))
7069cbvrabv 3417 . . . . . . . . . . 11 {𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)} = { ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}
7170supeq1i 9383 . . . . . . . . . 10 sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({ ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
72 fveq2 6842 . . . . . . . . . . . . . 14 (𝑗 = 𝑒 → (𝑄𝑗) = (𝑄𝑒))
7372oveq1d 7372 . . . . . . . . . . . . 13 (𝑗 = 𝑒 → ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) = ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)))
7473breq1d 5115 . . . . . . . . . . . 12 (𝑗 = 𝑒 → (((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)))
7574cbvrabv 3417 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)} = {𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}
7675supeq1i 9383 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
7730, 31, 32, 33, 34, 37, 42, 47, 64, 65, 66, 71, 76fourierdlem64 44401 . . . . . . . . 9 (𝜑 → ((sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ (0..^𝑀) ∧ sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))))
7877simprd 496 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
79 simpl1 1191 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝜑)
80 simpl2l 1226 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑖 ∈ (0..^𝑀))
81 fourierdlem97.qcn . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
82 cncff 24256 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
84 ffun 6671 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:dom (ℝ D 𝐹)⟶ℝ → Fun 𝐺)
8512, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
8685adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → Fun 𝐺)
87 ffvresb 7072 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8983, 88mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9089r19.21bi 3234 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9190simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ dom 𝐺)
9291ralrimiva 3143 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
93 dfss3 3932 . . . . . . . . . . . . . . . 16 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
9492, 93sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
9579, 80, 94syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
96 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ))
9779, 96jca 512 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)))
98 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
99 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))))
10098, 99sseldd 3945 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
10131fourierdlem2 44340 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10232, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10333, 102mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
104103simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
105 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(0...𝑀)⟶ℝ)
107106adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 13588 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111110rexrd 11205 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
112111adantrr 715 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ*)
113112adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
114 fzofzp1 13669 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
115114adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
116107, 115ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
117116adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
118117adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
119118rexrd 11205 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
120 elioore 13294 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → 𝑡 ∈ ℝ)
121120adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ ℝ)
122 zre 12503 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℤ → 𝑙 ∈ ℝ)
123122adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
124123ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑙 ∈ ℝ)
125 fourierdlem97.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
126 fourierdlem97.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
127125, 126resubcld 11583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
12830, 127eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
129128ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑇 ∈ ℝ)
130124, 129remulcld 11185 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑙 · 𝑇) ∈ ℝ)
131121, 130resubcld 11583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ℝ)
132110adantrr 715 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ)
133122ad2antll 727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑙 ∈ ℝ)
134128adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑇 ∈ ℝ)
135133, 134remulcld 11185 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑙 · 𝑇) ∈ ℝ)
136132, 135readdcld 11184 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ)
137136rexrd 11205 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
138137adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
139117, 135readdcld 11184 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ)
140139rexrd 11205 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
141140adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
142 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
143 ioogtlb 43723 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
144138, 141, 142, 143syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
145132adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
146145, 130, 121ltaddsubd 11755 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡 ↔ (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇))))
147144, 146mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇)))
148 iooltub 43738 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
149138, 141, 142, 148syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
150121, 130, 118ltsubaddd 11751 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)) ↔ 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
151149, 150mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)))
152113, 119, 131, 147, 151eliood 43726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15397, 100, 152syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15495, 153sseldd 3945 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)
155 elioore 13294 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) → 𝑡 ∈ ℝ)
156 recn 11141 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
157156adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
158 zcn 12504 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℤ → 𝑙 ∈ ℂ)
159158ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑙 ∈ ℂ)
160128recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ ℂ)
161160ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℂ)
162159, 161mulcld 11175 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝑙 · 𝑇) ∈ ℂ)
163157, 162npcand 11516 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) = 𝑡)
164163eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
165164adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
166 ovex 7390 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 − (𝑙 · 𝑇)) ∈ V
167 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 ∈ dom 𝐺 ↔ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺))
168167anbi2d 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) ↔ ((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)))
169 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 + (𝑙 · 𝑇)) = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
170169eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ↔ ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺))
171169fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))))
172 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺𝑠) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))
173171, 172eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠) ↔ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
174170, 173anbi12d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)) ↔ (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))))
175168, 174imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠))) ↔ (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))))
176 ax-resscn 11108 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℂ
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ℝ ⊆ ℂ)
1786, 177fssd 6686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:ℝ⟶ℂ)
179178adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
180122adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
181128adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑇 ∈ ℝ)
182180, 181remulcld 11185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → (𝑙 · 𝑇) ∈ ℝ)
183178ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
184128ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
185 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑙 ∈ ℤ)
186 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
187 fourierdlem97.fper . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
188187ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
189183, 184, 185, 186, 188fperiodmul 43528 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + (𝑙 · 𝑇))) = (𝐹𝑠))
190179, 182, 189, 10fperdvper 44150 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)))
191166, 175, 190vtocl 3518 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
192191simpld 495 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
193192adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
194165, 193eqeltrd 2838 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 ∈ dom 𝐺)
195194ex 413 . . . . . . . . . . . . . . . 16 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
196155, 195sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
197196adantlrl 718 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
1981973adantl3 1168 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
199154, 198mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ dom 𝐺)
200199ralrimiva 3143 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
201 dfss3 3932 . . . . . . . . . . 11 (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺 ↔ ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
202200, 201sylibr 233 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
2032023exp 1119 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)))
204203rexlimdvv 3204 . . . . . . . 8 (𝜑 → (∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺))
20578, 204mpd 15 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
206205sselda 3944 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ dom 𝐺)
207206iftrued 4494 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
20829, 207eqtr2d 2777 . . . 4 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐺𝑠) = (𝐻𝑠))
209208mpteq2dva 5205 . . 3 (𝜑 → (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
21015a1i 11 . . . . . 6 (𝜑 → dom 𝐺 = dom (ℝ D 𝐹))
211210feq2d 6654 . . . . 5 (𝜑 → (𝐺:dom 𝐺⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
21212, 211mpbird 256 . . . 4 (𝜑𝐺:dom 𝐺⟶ℝ)
213212, 205feqresmpt 6911 . . 3 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)))
21425, 27fmptd 7062 . . . 4 (𝜑𝐻:ℝ⟶ℝ)
215214, 2feqresmpt 6911 . . 3 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
216209, 213, 2153eqtr4d 2786 . 2 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))))
217214, 177fssd 6686 . . 3 (𝜑𝐻:ℝ⟶ℂ)
21827a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
219 eleq1 2825 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝑠 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
220 fveq2 6842 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝐺𝑠) = (𝐺‘(𝑥 + 𝑇)))
221219, 220ifbieq1d 4510 . . . . . . . 8 (𝑠 = (𝑥 + 𝑇) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
222178, 128, 187, 10fperdvper 44150 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
223222simpld 495 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
224223iftrued 4494 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = (𝐺‘(𝑥 + 𝑇)))
225221, 224sylan9eqr 2798 . . . . . . 7 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
226225adantllr 717 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
227 simpr 485 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
228128adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
229227, 228readdcld 11184 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ)
230229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
231212ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐺:dom 𝐺⟶ℝ)
232223adantlr 713 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
233231, 232ffvelcdmd 7036 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) ∈ ℝ)
234218, 226, 230, 233fvmptd 6955 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
235222simprd 496 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
236235adantlr 713 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
237 eleq1 2825 . . . . . . . . 9 (𝑠 = 𝑥 → (𝑠 ∈ dom 𝐺𝑥 ∈ dom 𝐺))
238 fveq2 6842 . . . . . . . . 9 (𝑠 = 𝑥 → (𝐺𝑠) = (𝐺𝑥))
239237, 238ifbieq1d 4510 . . . . . . . 8 (𝑠 = 𝑥 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
240239adantl 482 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
241 simplr 767 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
242 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
243242iftrued 4494 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
244212ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
245243, 244eqeltrd 2838 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
246245adantlr 713 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
247218, 240, 241, 246fvmptd 6955 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
248 simpr 485 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
249248iftrued 4494 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
250247, 249eqtr2d 2777 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐻𝑥))
251234, 236, 2503eqtrd 2780 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
252229recnd 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℂ)
253228recnd 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
254252, 253negsubd 11518 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) + -𝑇) = ((𝑥 + 𝑇) − 𝑇))
255227recnd 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
256255, 253pncand 11513 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
257254, 256eqtr2d 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
258257adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
259 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
260 simpll 765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝜑)
261260, 259jca 512 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺))
262 eleq1 2825 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → (𝑦 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
263262anbi2d 629 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → ((𝜑𝑦 ∈ dom 𝐺) ↔ (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺)))
264 oveq1 7364 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝑦 + -𝑇) = ((𝑥 + 𝑇) + -𝑇))
265264eleq1d 2822 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝑦 + -𝑇) ∈ dom 𝐺 ↔ ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺))
266264fveq2d 6846 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺‘(𝑦 + -𝑇)) = (𝐺‘((𝑥 + 𝑇) + -𝑇)))
267 fveq2 6842 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺𝑦) = (𝐺‘(𝑥 + 𝑇)))
268266, 267eqeq12d 2752 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦) ↔ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
269265, 268anbi12d 631 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → (((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)) ↔ (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
270263, 269imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥 + 𝑇) → (((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦))) ↔ ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))))
271128renegcld 11582 . . . . . . . . . . . 12 (𝜑 → -𝑇 ∈ ℝ)
272160mulm1d 11607 . . . . . . . . . . . . . . . . 17 (𝜑 → (-1 · 𝑇) = -𝑇)
273272eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑇 = (-1 · 𝑇))
274273adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → -𝑇 = (-1 · 𝑇))
275274oveq2d 7373 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝑦 + -𝑇) = (𝑦 + (-1 · 𝑇)))
276275fveq2d 6846 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹‘(𝑦 + (-1 · 𝑇))))
277178adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
278128adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
279 1zzd 12534 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
280279znegcld 12609 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → -1 ∈ ℤ)
281 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
282187adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
283277, 278, 280, 281, 282fperiodmul 43528 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + (-1 · 𝑇))) = (𝐹𝑦))
284276, 283eqtrd 2776 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹𝑦))
285178, 271, 284, 10fperdvper 44150 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)))
286270, 285vtoclg 3525 . . . . . . . . . 10 ((𝑥 + 𝑇) ∈ dom 𝐺 → ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
287259, 261, 286sylc 65 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
288287simpld 495 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺)
289258, 288eqeltrd 2838 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
290289stoic1a 1774 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ (𝑥 + 𝑇) ∈ dom 𝐺)
291290iffalsed 4497 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = 0)
29227a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
293221adantl 482 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
294229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
295 0red 11158 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 0 ∈ ℝ)
296291, 295eqeltrd 2838 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) ∈ ℝ)
297292, 293, 294, 296fvmptd 6955 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
298 simpr 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ 𝑥 ∈ dom 𝐺)
299298iffalsed 4497 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = 0)
300239, 299sylan9eqr 2798 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
301 simplr 767 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
302292, 300, 301, 295fvmptd 6955 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = 0)
303291, 297, 3023eqtr4d 2786 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
304251, 303pm2.61dan 811 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
305 elioore 13294 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
306305adantl 482 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
307305, 25sylan2 593 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
308306, 307, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
309308adantlr 713 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
31091iftrued 4494 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
311309, 310eqtrd 2776 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (𝐺𝑠))
312311mpteq2dva 5205 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
313214adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:ℝ⟶ℝ)
314 ioossre 13325 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
315314a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
316313, 315feqresmpt 6911 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
317212adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:dom 𝐺⟶ℝ)
318317, 94feqresmpt 6911 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
319312, 316, 3183eqtr4d 2786 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
320319, 81eqeltrd 2838 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
321 eqid 2736 . . 3 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
322 oveq1 7364 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 + (𝑙 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
323322eleq1d 2822 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
324323rexbidv 3175 . . . . . 6 (𝑧 = 𝑦 → (∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
325324cbvrabv 3417 . . . . 5 {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
326325uneq2i 4120 . . . 4 ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
327326eqcomi 2745 . . 3 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄})
32854fveq2i 6845 . . . 4 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))
329328oveq1i 7367 . . 3 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)
330 isoeq5 7266 . . . . . 6 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
33161, 330ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
332331iotabii 6481 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
333 isoeq1 7262 . . . . 5 (𝑓 = 𝑔 → (𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))))
334333cbviotavw 6456 . . . 4 (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
335332, 334, 653eqtr4ri 2775 . . 3 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
336 id 22 . . . . 5 (𝑣 = 𝑥𝑣 = 𝑥)
337 oveq2 7365 . . . . . . . 8 (𝑣 = 𝑥 → (𝐵𝑣) = (𝐵𝑥))
338337oveq1d 7372 . . . . . . 7 (𝑣 = 𝑥 → ((𝐵𝑣) / 𝑇) = ((𝐵𝑥) / 𝑇))
339338fveq2d 6846 . . . . . 6 (𝑣 = 𝑥 → (⌊‘((𝐵𝑣) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
340339oveq1d 7372 . . . . 5 (𝑣 = 𝑥 → ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
341336, 340oveq12d 7375 . . . 4 (𝑣 = 𝑥 → (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
342341cbvmptv 5218 . . 3 (𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
343 eqeq1 2740 . . . . 5 (𝑢 = 𝑧 → (𝑢 = 𝐵𝑧 = 𝐵))
344 id 22 . . . . 5 (𝑢 = 𝑧𝑢 = 𝑧)
345343, 344ifbieq2d 4512 . . . 4 (𝑢 = 𝑧 → if(𝑢 = 𝐵, 𝐴, 𝑢) = if(𝑧 = 𝐵, 𝐴, 𝑧))
346345cbvmptv 5218 . . 3 (𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢)) = (𝑧 ∈ (𝐴(,]𝐵) ↦ if(𝑧 = 𝐵, 𝐴, 𝑧))
347 eqid 2736 . . 3 ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))) = ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))
348 eqid 2736 . . 3 (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) = (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))
349 eqid 2736 . . 3 (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))))) = (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))))
350 fveq2 6842 . . . . . . . 8 (𝑖 = 𝑡 → (𝑄𝑖) = (𝑄𝑡))
351350breq1d 5115 . . . . . . 7 (𝑖 = 𝑡 → ((𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))))
352351cbvrabv 3417 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}
353 fveq2 6842 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))
354353fveq2d 6846 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)))
355354eqcomd 2742 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)))
356355breq2d 5117 . . . . . . 7 (𝑤 = 𝑥 → ((𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))))
357356rabbidv 3415 . . . . . 6 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))})
358352, 357eqtr2id 2789 . . . . 5 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))})
359358supeq1d 9382 . . . 4 (𝑤 = 𝑥 → sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
360359cbvmptv 5218 . . 3 (𝑤 ∈ ℝ ↦ sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
36131, 30, 32, 33, 217, 304, 320, 34, 35, 321, 327, 329, 335, 342, 346, 66, 347, 348, 349, 360fourierdlem90 44427 . 2 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
362216, 361eqeltrd 2838 1 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cun 3908  wss 3910  ifcif 4486  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  cio 6446  Fun wfun 6490  wf 6492  cfv 6496   Isom wiso 6497  (class class class)co 7357  m cmap 8765  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  cz 12499  (,)cioo 13264  (,]cioc 13265  [,]cicc 13267  ...cfz 13424  ..^cfzo 13567  cfl 13695  chash 14230  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem112  44449
  Copyright terms: Public domain W3C validator