Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem97 Structured version   Visualization version   GIF version

Theorem fourierdlem97 43634
Description: 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem97.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem97.g 𝐺 = (ℝ D 𝐹)
fourierdlem97.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem97.a (𝜑𝐵 ∈ ℝ)
fourierdlem97.b (𝜑𝐴 ∈ ℝ)
fourierdlem97.t 𝑇 = (𝐵𝐴)
fourierdlem97.m (𝜑𝑀 ∈ ℕ)
fourierdlem97.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem97.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem97.qcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem97.c (𝜑𝐶 ∈ ℝ)
fourierdlem97.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem97.j (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
fourierdlem97.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
fourierdlem97.h 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
Assertion
Ref Expression
fourierdlem97 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑦,𝐶,𝑔   𝐶,𝑖,𝑥,𝑦   𝐶,𝑚,𝑝,𝑦   𝑦,𝐷,𝑔   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝐹,𝑠,𝑥   𝑦,𝐹   𝑖,𝐺,𝑠   𝑦,𝐺   𝑖,𝐻,𝑠,𝑥   ,𝐽,𝑘,𝑖,𝑥   𝐽,𝑠   ,𝑀,𝑖,𝑥   𝑚,𝑀,𝑝   𝑀,𝑠   𝑄,,𝑘,𝑔,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝,𝑘   𝑄,𝑠   𝑇,,𝑘,𝑔,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑇,𝑠   ,𝑉,𝑘,𝑔   𝑖,𝑉,𝑥   𝑉,𝑝   𝑉,𝑠   𝜑,,𝑦,𝑔   𝜑,𝑖,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑝)   𝐴(𝑦,𝑔,,𝑘,𝑠)   𝐵(𝑦,𝑔,,𝑘,𝑠)   𝐶(,𝑘,𝑠)   𝐷(,𝑘,𝑠)   𝑃(𝑥,𝑦,𝑔,,𝑖,𝑘,𝑚,𝑠,𝑝)   𝐹(𝑔,,𝑖,𝑘,𝑚,𝑝)   𝐺(𝑥,𝑔,,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑔,,𝑘,𝑚,𝑝)   𝐽(𝑦,𝑔,𝑚,𝑝)   𝑀(𝑦,𝑔,𝑘)   𝑉(𝑦,𝑚)

Proof of Theorem fourierdlem97
Dummy variables 𝑓 𝑙 𝑡 𝑢 𝑤 𝑧 𝑣 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13069 . . . . . . . 8 ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ
21a1i 11 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ)
32sselda 3917 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ ℝ)
4 iftrue 4462 . . . . . . . . . . 11 (𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
54adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
6 fourierdlem97.f . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶ℝ)
7 ssid 3939 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ
8 dvfre 25020 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
96, 7, 8sylancl 585 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10 fourierdlem97.g . . . . . . . . . . . . . 14 𝐺 = (ℝ D 𝐹)
1110feq1i 6575 . . . . . . . . . . . . 13 (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
129, 11sylibr 233 . . . . . . . . . . . 12 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
14 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ dom 𝐺𝑠 ∈ dom 𝐺)
1510dmeqi 5802 . . . . . . . . . . . . 13 dom 𝐺 = dom (ℝ D 𝐹)
1614, 15eleqtrdi 2849 . . . . . . . . . . . 12 (𝑠 ∈ dom 𝐺𝑠 ∈ dom (ℝ D 𝐹))
1716adantl 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝑠 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6944 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → (𝐺𝑠) ∈ ℝ)
195, 18eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2019adantlr 711 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
21 iffalse 4465 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
22 0red 10909 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ)
2321, 22eqeltrd 2839 . . . . . . . . 9 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2423adantl 481 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2520, 24pm2.61dan 809 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
263, 25syldan 590 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
27 fourierdlem97.h . . . . . . 7 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
2827fvmpt2 6868 . . . . . 6 ((𝑠 ∈ ℝ ∧ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
293, 26, 28syl2anc 583 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
30 fourierdlem97.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
31 fourierdlem97.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
32 fourierdlem97.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
33 fourierdlem97.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem97.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
35 fourierdlem97.d . . . . . . . . . . 11 (𝜑𝐷 ∈ (𝐶(,)+∞))
36 elioore 13038 . . . . . . . . . . 11 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
3735, 36syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3834rexrd 10956 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ*)
39 pnfxr 10960 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4039a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
41 ioogtlb 42923 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (𝐶(,)+∞)) → 𝐶 < 𝐷)
4238, 40, 35, 41syl3anc 1369 . . . . . . . . . 10 (𝜑𝐶 < 𝐷)
43 oveq1 7262 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 + ( · 𝑇)) = (𝑥 + ( · 𝑇)))
4443eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4544rexbidv 3225 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4645cbvrabv 3416 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄}
4746uneq2i 4090 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄})
48 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
4948oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
5049eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5150cbvrexvw 3373 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄)
5251a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5352rabbiia 3396 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
5453uneq2i 4090 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
55 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 (𝑙 = → (𝑙 · 𝑇) = ( · 𝑇))
5655oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + ( · 𝑇)))
5756eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
5857cbvrexvw 3373 . . . . . . . . . . . . . . . 16 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
5958a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
6059rabbiia 3396 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
6160uneq2i 4090 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6254, 61eqtri 2766 . . . . . . . . . . . 12 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6362fveq2i 6759 . . . . . . . . . . 11 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))
6463oveq1i 7265 . . . . . . . . . 10 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})) − 1)
65 fourierdlem97.v . . . . . . . . . 10 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
66 fourierdlem97.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
67 oveq1 7262 . . . . . . . . . . . . . 14 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
6867oveq2d 7271 . . . . . . . . . . . . 13 (𝑘 = → ((𝑄‘0) + (𝑘 · 𝑇)) = ((𝑄‘0) + ( · 𝑇)))
6968breq1d 5080 . . . . . . . . . . . 12 (𝑘 = → (((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)))
7069cbvrabv 3416 . . . . . . . . . . 11 {𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)} = { ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}
7170supeq1i 9136 . . . . . . . . . 10 sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({ ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
72 fveq2 6756 . . . . . . . . . . . . . 14 (𝑗 = 𝑒 → (𝑄𝑗) = (𝑄𝑒))
7372oveq1d 7270 . . . . . . . . . . . . 13 (𝑗 = 𝑒 → ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) = ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)))
7473breq1d 5080 . . . . . . . . . . . 12 (𝑗 = 𝑒 → (((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)))
7574cbvrabv 3416 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)} = {𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}
7675supeq1i 9136 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
7730, 31, 32, 33, 34, 37, 42, 47, 64, 65, 66, 71, 76fourierdlem64 43601 . . . . . . . . 9 (𝜑 → ((sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ (0..^𝑀) ∧ sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))))
7877simprd 495 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
79 simpl1 1189 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝜑)
80 simpl2l 1224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑖 ∈ (0..^𝑀))
81 fourierdlem97.qcn . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
82 cncff 23962 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
84 ffun 6587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:dom (ℝ D 𝐹)⟶ℝ → Fun 𝐺)
8512, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
8685adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → Fun 𝐺)
87 ffvresb 6980 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8983, 88mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9089r19.21bi 3132 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9190simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ dom 𝐺)
9291ralrimiva 3107 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
93 dfss3 3905 . . . . . . . . . . . . . . . 16 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
9492, 93sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
9579, 80, 94syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
96 simpl2 1190 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ))
9779, 96jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)))
98 simpl3 1191 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
99 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))))
10098, 99sseldd 3918 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
10131fourierdlem2 43540 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10232, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10333, 102mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
104103simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
105 elmapi 8595 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(0...𝑀)⟶ℝ)
107106adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111110rexrd 10956 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
112111adantrr 713 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ*)
113112adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
114 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
115114adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
116107, 115ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
117116adantrr 713 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
118117adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
119118rexrd 10956 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
120 elioore 13038 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → 𝑡 ∈ ℝ)
121120adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ ℝ)
122 zre 12253 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℤ → 𝑙 ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
124123ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑙 ∈ ℝ)
125 fourierdlem97.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
126 fourierdlem97.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
127125, 126resubcld 11333 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
12830, 127eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
129128ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑇 ∈ ℝ)
130124, 129remulcld 10936 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑙 · 𝑇) ∈ ℝ)
131121, 130resubcld 11333 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ℝ)
132110adantrr 713 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ)
133122ad2antll 725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑙 ∈ ℝ)
134128adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑇 ∈ ℝ)
135133, 134remulcld 10936 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑙 · 𝑇) ∈ ℝ)
136132, 135readdcld 10935 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ)
137136rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
138137adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
139117, 135readdcld 10935 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ)
140139rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
141140adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
142 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
143 ioogtlb 42923 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
144138, 141, 142, 143syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
145132adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
146145, 130, 121ltaddsubd 11505 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡 ↔ (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇))))
147144, 146mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇)))
148 iooltub 42938 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
149138, 141, 142, 148syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
150121, 130, 118ltsubaddd 11501 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)) ↔ 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
151149, 150mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)))
152113, 119, 131, 147, 151eliood 42926 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15397, 100, 152syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15495, 153sseldd 3918 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)
155 elioore 13038 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) → 𝑡 ∈ ℝ)
156 recn 10892 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
157156adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
158 zcn 12254 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℤ → 𝑙 ∈ ℂ)
159158ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑙 ∈ ℂ)
160128recnd 10934 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ ℂ)
161160ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℂ)
162159, 161mulcld 10926 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝑙 · 𝑇) ∈ ℂ)
163157, 162npcand 11266 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) = 𝑡)
164163eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
165164adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
166 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 − (𝑙 · 𝑇)) ∈ V
167 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 ∈ dom 𝐺 ↔ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺))
168167anbi2d 628 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) ↔ ((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)))
169 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 + (𝑙 · 𝑇)) = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
170169eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ↔ ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺))
171169fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))))
172 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺𝑠) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))
173171, 172eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠) ↔ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
174170, 173anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)) ↔ (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))))
175168, 174imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠))) ↔ (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))))
176 ax-resscn 10859 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℂ
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ℝ ⊆ ℂ)
1786, 177fssd 6602 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:ℝ⟶ℂ)
179178adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
180122adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
181128adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑇 ∈ ℝ)
182180, 181remulcld 10936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → (𝑙 · 𝑇) ∈ ℝ)
183178ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
184128ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
185 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑙 ∈ ℤ)
186 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
187 fourierdlem97.fper . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
188187ad4ant14 748 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
189183, 184, 185, 186, 188fperiodmul 42733 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + (𝑙 · 𝑇))) = (𝐹𝑠))
190179, 182, 189, 10fperdvper 43350 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)))
191166, 175, 190vtocl 3488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
192191simpld 494 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
193192adantlr 711 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
194165, 193eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 ∈ dom 𝐺)
195194ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
196155, 195sylan2 592 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
197196adantlrl 716 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
1981973adantl3 1166 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
199154, 198mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ dom 𝐺)
200199ralrimiva 3107 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
201 dfss3 3905 . . . . . . . . . . 11 (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺 ↔ ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
202200, 201sylibr 233 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
2032023exp 1117 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)))
204203rexlimdvv 3221 . . . . . . . 8 (𝜑 → (∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺))
20578, 204mpd 15 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
206205sselda 3917 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ dom 𝐺)
207206iftrued 4464 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
20829, 207eqtr2d 2779 . . . 4 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐺𝑠) = (𝐻𝑠))
209208mpteq2dva 5170 . . 3 (𝜑 → (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
21015a1i 11 . . . . . 6 (𝜑 → dom 𝐺 = dom (ℝ D 𝐹))
211210feq2d 6570 . . . . 5 (𝜑 → (𝐺:dom 𝐺⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
21212, 211mpbird 256 . . . 4 (𝜑𝐺:dom 𝐺⟶ℝ)
213212, 205feqresmpt 6820 . . 3 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)))
21425, 27fmptd 6970 . . . 4 (𝜑𝐻:ℝ⟶ℝ)
215214, 2feqresmpt 6820 . . 3 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
216209, 213, 2153eqtr4d 2788 . 2 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))))
217214, 177fssd 6602 . . 3 (𝜑𝐻:ℝ⟶ℂ)
21827a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
219 eleq1 2826 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝑠 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
220 fveq2 6756 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝐺𝑠) = (𝐺‘(𝑥 + 𝑇)))
221219, 220ifbieq1d 4480 . . . . . . . 8 (𝑠 = (𝑥 + 𝑇) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
222178, 128, 187, 10fperdvper 43350 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
223222simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
224223iftrued 4464 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = (𝐺‘(𝑥 + 𝑇)))
225221, 224sylan9eqr 2801 . . . . . . 7 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
226225adantllr 715 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
227 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
228128adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
229227, 228readdcld 10935 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ)
230229adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
231212ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐺:dom 𝐺⟶ℝ)
232223adantlr 711 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
233231, 232ffvelrnd 6944 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) ∈ ℝ)
234218, 226, 230, 233fvmptd 6864 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
235222simprd 495 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
236235adantlr 711 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
237 eleq1 2826 . . . . . . . . 9 (𝑠 = 𝑥 → (𝑠 ∈ dom 𝐺𝑥 ∈ dom 𝐺))
238 fveq2 6756 . . . . . . . . 9 (𝑠 = 𝑥 → (𝐺𝑠) = (𝐺𝑥))
239237, 238ifbieq1d 4480 . . . . . . . 8 (𝑠 = 𝑥 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
240239adantl 481 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
241 simplr 765 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
242 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
243242iftrued 4464 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
244212ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
245243, 244eqeltrd 2839 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
246245adantlr 711 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
247218, 240, 241, 246fvmptd 6864 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
248 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
249248iftrued 4464 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
250247, 249eqtr2d 2779 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐻𝑥))
251234, 236, 2503eqtrd 2782 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
252229recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℂ)
253228recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
254252, 253negsubd 11268 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) + -𝑇) = ((𝑥 + 𝑇) − 𝑇))
255227recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
256255, 253pncand 11263 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
257254, 256eqtr2d 2779 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
258257adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
259 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
260 simpll 763 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝜑)
261260, 259jca 511 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺))
262 eleq1 2826 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → (𝑦 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
263262anbi2d 628 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → ((𝜑𝑦 ∈ dom 𝐺) ↔ (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺)))
264 oveq1 7262 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝑦 + -𝑇) = ((𝑥 + 𝑇) + -𝑇))
265264eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝑦 + -𝑇) ∈ dom 𝐺 ↔ ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺))
266264fveq2d 6760 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺‘(𝑦 + -𝑇)) = (𝐺‘((𝑥 + 𝑇) + -𝑇)))
267 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺𝑦) = (𝐺‘(𝑥 + 𝑇)))
268266, 267eqeq12d 2754 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦) ↔ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
269265, 268anbi12d 630 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → (((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)) ↔ (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
270263, 269imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥 + 𝑇) → (((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦))) ↔ ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))))
271128renegcld 11332 . . . . . . . . . . . 12 (𝜑 → -𝑇 ∈ ℝ)
272160mulm1d 11357 . . . . . . . . . . . . . . . . 17 (𝜑 → (-1 · 𝑇) = -𝑇)
273272eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑇 = (-1 · 𝑇))
274273adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → -𝑇 = (-1 · 𝑇))
275274oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝑦 + -𝑇) = (𝑦 + (-1 · 𝑇)))
276275fveq2d 6760 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹‘(𝑦 + (-1 · 𝑇))))
277178adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
278128adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
279 1zzd 12281 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
280279znegcld 12357 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → -1 ∈ ℤ)
281 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
282187adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
283277, 278, 280, 281, 282fperiodmul 42733 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + (-1 · 𝑇))) = (𝐹𝑦))
284276, 283eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹𝑦))
285178, 271, 284, 10fperdvper 43350 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)))
286270, 285vtoclg 3495 . . . . . . . . . 10 ((𝑥 + 𝑇) ∈ dom 𝐺 → ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
287259, 261, 286sylc 65 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
288287simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺)
289258, 288eqeltrd 2839 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
290289stoic1a 1776 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ (𝑥 + 𝑇) ∈ dom 𝐺)
291290iffalsed 4467 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = 0)
29227a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
293221adantl 481 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
294229adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
295 0red 10909 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 0 ∈ ℝ)
296291, 295eqeltrd 2839 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) ∈ ℝ)
297292, 293, 294, 296fvmptd 6864 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
298 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ 𝑥 ∈ dom 𝐺)
299298iffalsed 4467 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = 0)
300239, 299sylan9eqr 2801 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
301 simplr 765 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
302292, 300, 301, 295fvmptd 6864 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = 0)
303291, 297, 3023eqtr4d 2788 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
304251, 303pm2.61dan 809 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
305 elioore 13038 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
306305adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
307305, 25sylan2 592 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
308306, 307, 28syl2anc 583 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
309308adantlr 711 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
31091iftrued 4464 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
311309, 310eqtrd 2778 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (𝐺𝑠))
312311mpteq2dva 5170 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
313214adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:ℝ⟶ℝ)
314 ioossre 13069 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
315314a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
316313, 315feqresmpt 6820 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
317212adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:dom 𝐺⟶ℝ)
318317, 94feqresmpt 6820 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
319312, 316, 3183eqtr4d 2788 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
320319, 81eqeltrd 2839 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
321 eqid 2738 . . 3 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
322 oveq1 7262 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 + (𝑙 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
323322eleq1d 2823 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
324323rexbidv 3225 . . . . . 6 (𝑧 = 𝑦 → (∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
325324cbvrabv 3416 . . . . 5 {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
326325uneq2i 4090 . . . 4 ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
327326eqcomi 2747 . . 3 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄})
32854fveq2i 6759 . . . 4 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))
329328oveq1i 7265 . . 3 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)
330 isoeq5 7172 . . . . . 6 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
33161, 330ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
332331iotabii 6403 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
333 isoeq1 7168 . . . . 5 (𝑓 = 𝑔 → (𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))))
334333cbviotavw 6384 . . . 4 (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
335332, 334, 653eqtr4ri 2777 . . 3 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
336 id 22 . . . . 5 (𝑣 = 𝑥𝑣 = 𝑥)
337 oveq2 7263 . . . . . . . 8 (𝑣 = 𝑥 → (𝐵𝑣) = (𝐵𝑥))
338337oveq1d 7270 . . . . . . 7 (𝑣 = 𝑥 → ((𝐵𝑣) / 𝑇) = ((𝐵𝑥) / 𝑇))
339338fveq2d 6760 . . . . . 6 (𝑣 = 𝑥 → (⌊‘((𝐵𝑣) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
340339oveq1d 7270 . . . . 5 (𝑣 = 𝑥 → ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
341336, 340oveq12d 7273 . . . 4 (𝑣 = 𝑥 → (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
342341cbvmptv 5183 . . 3 (𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
343 eqeq1 2742 . . . . 5 (𝑢 = 𝑧 → (𝑢 = 𝐵𝑧 = 𝐵))
344 id 22 . . . . 5 (𝑢 = 𝑧𝑢 = 𝑧)
345343, 344ifbieq2d 4482 . . . 4 (𝑢 = 𝑧 → if(𝑢 = 𝐵, 𝐴, 𝑢) = if(𝑧 = 𝐵, 𝐴, 𝑧))
346345cbvmptv 5183 . . 3 (𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢)) = (𝑧 ∈ (𝐴(,]𝐵) ↦ if(𝑧 = 𝐵, 𝐴, 𝑧))
347 eqid 2738 . . 3 ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))) = ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))
348 eqid 2738 . . 3 (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) = (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))
349 eqid 2738 . . 3 (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))))) = (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))))
350 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑡 → (𝑄𝑖) = (𝑄𝑡))
351350breq1d 5080 . . . . . . 7 (𝑖 = 𝑡 → ((𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))))
352351cbvrabv 3416 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}
353 fveq2 6756 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))
354353fveq2d 6760 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)))
355354eqcomd 2744 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)))
356355breq2d 5082 . . . . . . 7 (𝑤 = 𝑥 → ((𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))))
357356rabbidv 3404 . . . . . 6 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))})
358352, 357eqtr2id 2792 . . . . 5 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))})
359358supeq1d 9135 . . . 4 (𝑤 = 𝑥 → sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
360359cbvmptv 5183 . . 3 (𝑤 ∈ ℝ ↦ sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
36131, 30, 32, 33, 217, 304, 320, 34, 35, 321, 327, 329, 335, 342, 346, 66, 347, 348, 349, 360fourierdlem90 43627 . 2 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
362216, 361eqeltrd 2839 1 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cun 3881  wss 3883  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cio 6374  Fun wfun 6412  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  cz 12249  (,)cioo 13008  (,]cioc 13009  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  cfl 13438  chash 13972  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem112  43649
  Copyright terms: Public domain W3C validator