Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem1 Structured version   Visualization version   GIF version

Theorem dirkercncflem1 43534
Description: If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem1.a 𝐴 = (𝑌 − π)
dirkercncflem1.b 𝐵 = (𝑌 + π)
dirkercncflem1.y (𝜑𝑌 ∈ ℝ)
dirkercncflem1.ymod0 (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Distinct variable groups:   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem dirkercncflem1
StepHypRef Expression
1 dirkercncflem1.a . . . 4 𝐴 = (𝑌 − π)
2 dirkercncflem1.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
3 pire 25520 . . . . . . 7 π ∈ ℝ
43a1i 11 . . . . . 6 (𝜑 → π ∈ ℝ)
52, 4resubcld 11333 . . . . 5 (𝜑 → (𝑌 − π) ∈ ℝ)
65rexrd 10956 . . . 4 (𝜑 → (𝑌 − π) ∈ ℝ*)
71, 6eqeltrid 2843 . . 3 (𝜑𝐴 ∈ ℝ*)
8 dirkercncflem1.b . . . 4 𝐵 = (𝑌 + π)
92, 4readdcld 10935 . . . . 5 (𝜑 → (𝑌 + π) ∈ ℝ)
109rexrd 10956 . . . 4 (𝜑 → (𝑌 + π) ∈ ℝ*)
118, 10eqeltrid 2843 . . 3 (𝜑𝐵 ∈ ℝ*)
12 pipos 25522 . . . . . 6 0 < π
13 ltsubpos 11397 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ (𝑌 − π) < 𝑌))
1412, 13mpbii 232 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑌 − π) < 𝑌)
154, 2, 14syl2anc 583 . . . 4 (𝜑 → (𝑌 − π) < 𝑌)
161, 15eqbrtrid 5105 . . 3 (𝜑𝐴 < 𝑌)
17 ltaddpos 11395 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ 𝑌 < (𝑌 + π)))
1812, 17mpbii 232 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 < (𝑌 + π))
194, 2, 18syl2anc 583 . . . 4 (𝜑𝑌 < (𝑌 + π))
2019, 8breqtrrdi 5112 . . 3 (𝜑𝑌 < 𝐵)
217, 11, 2, 16, 20eliood 42926 . 2 (𝜑𝑌 ∈ (𝐴(,)𝐵))
22 eldifi 4057 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
2322elioored 42977 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℝ)
2423adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
2524recnd 10934 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
26 2cnd 11981 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
27 picn 25521 . . . . . . . . 9 π ∈ ℂ
2827a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
29 2ne0 12007 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
313, 12gt0ne0ii 11441 . . . . . . . . 9 π ≠ 0
3231a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
3325, 26, 28, 30, 32divdiv1d 11712 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem1.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) = 0)
35 2rp 12664 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
37 pirp 25523 . . . . . . . . . . . . . . 15 π ∈ ℝ+
3837a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ+)
3936, 38rpmulcld 12717 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ+)
40 mod0 13524 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
412, 39, 40syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
4234, 41mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
43 peano2zm 12293 . . . . . . . . . . 11 ((𝑌 / (2 · π)) ∈ ℤ → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4544ad2antrr 722 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4644zred 12355 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
481, 5eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
4948, 39rerpdivcld 12732 . . . . . . . . . . . 12 (𝜑 → (𝐴 / (2 · π)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) ∈ ℝ)
5139rpred 12701 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
5339rpne0d 12706 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ≠ 0)
5453adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ≠ 0)
5524, 52, 54redivcld 11733 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) ∈ ℝ)
5651recnd 10934 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · π) ∈ ℂ)
5756, 53dividd 11679 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · π) / (2 · π)) = 1)
5857eqcomd 2744 . . . . . . . . . . . . . . 15 (𝜑 → 1 = ((2 · π) / (2 · π)))
5958oveq2d 7271 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
602recnd 10934 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℂ)
6160, 56, 56, 53divsubdird 11720 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
6259, 61eqtr4d 2781 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 − (2 · π)) / (2 · π)))
632, 51resubcld 11333 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) ∈ ℝ)
6427mulid2i 10911 . . . . . . . . . . . . . . . . . . 19 (1 · π) = π
6564eqcomi 2747 . . . . . . . . . . . . . . . . . 18 π = (1 · π)
66 1lt2 12074 . . . . . . . . . . . . . . . . . . 19 1 < 2
67 1re 10906 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
68 2re 11977 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
6967, 68, 3, 12ltmul1ii 11833 . . . . . . . . . . . . . . . . . . 19 (1 < 2 ↔ (1 · π) < (2 · π))
7066, 69mpbi 229 . . . . . . . . . . . . . . . . . 18 (1 · π) < (2 · π)
7165, 70eqbrtri 5091 . . . . . . . . . . . . . . . . 17 π < (2 · π)
7271a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π < (2 · π))
734, 51, 2, 72ltsub2dd 11518 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 − (2 · π)) < (𝑌 − π))
7473, 1breqtrrdi 5112 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) < 𝐴)
7563, 48, 39, 74ltdiv1dd 12758 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) < (𝐴 / (2 · π)))
7662, 75eqbrtrd 5092 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7776adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7848adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ)
7939adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ+)
8022adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ (𝐴(,)𝐵))
817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ*)
8211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ*)
83 elioo2 13049 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8481, 82, 83syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8580, 84mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
8685simp2d 1141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 < 𝑦)
8778, 24, 79, 86ltdiv1dd 12758 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) < (𝑦 / (2 · π)))
8847, 50, 55, 77, 87lttrd 11066 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
8988adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
9023ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
912ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
9239ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
93 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 < 𝑌)
9490, 91, 92, 93ltdiv1dd 12758 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (𝑌 / (2 · π)))
9560, 56, 53divcld 11681 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℂ)
97 1cnd 10901 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
9896, 97npcand 11266 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑌 / (2 · π)) − 1) + 1) = (𝑌 / (2 · π)))
9998eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10194, 100breqtrd 5096 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1))
102 btwnnz 12326 . . . . . . . . 9 ((((𝑌 / (2 · π)) − 1) ∈ ℤ ∧ ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10345, 89, 101, 102syl3anc 1369 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10442ad2antrr 722 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) ∈ ℤ)
1052ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
10624adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
10779adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
10824adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 ∈ ℝ)
1092ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦𝑌)
111 eldifsni 4720 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦𝑌)
112111necomd 2998 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑌𝑦)
113112ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌𝑦)
114108, 109, 110, 113leneltd 11059 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 < 𝑌)
115114stoic1a 1776 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ 𝑦𝑌)
116105, 106ltnled 11052 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 < 𝑦 ↔ ¬ 𝑦𝑌))
117115, 116mpbird 256 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 < 𝑦)
118105, 106, 107, 117ltdiv1dd 12758 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) < (𝑦 / (2 · π)))
1198, 9eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
120119, 39rerpdivcld 12732 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) ∈ ℝ)
121120adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) ∈ ℝ)
1222, 39rerpdivcld 12732 . . . . . . . . . . . . 13 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
123122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℝ)
124 1red 10907 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℝ)
125123, 124readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) + 1) ∈ ℝ)
126119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ)
12785simp3d 1142 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 < 𝐵)
12824, 126, 79, 127ltdiv1dd 12758 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < (𝐵 / (2 · π)))
1298oveq1i 7265 . . . . . . . . . . . . 13 (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π))
13027a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
13160, 130, 56, 53divdird 11719 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (π / (2 · π))))
1324, 39rerpdivcld 12732 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) ∈ ℝ)
133 1red 10907 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
134 2cn 11978 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
135134, 27mulcomi 10914 . . . . . . . . . . . . . . . . . . 19 (2 · π) = (π · 2)
136135oveq2i 7266 . . . . . . . . . . . . . . . . . 18 (π / (2 · π)) = (π / (π · 2))
13727, 31pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℂ ∧ π ≠ 0)
138 2cnne0 12113 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ ∧ 2 ≠ 0)
139 divdiv1 11616 . . . . . . . . . . . . . . . . . . 19 ((π ∈ ℂ ∧ (π ∈ ℂ ∧ π ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / π) / 2) = (π / (π · 2)))
14027, 137, 138, 139mp3an 1459 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (π / (π · 2))
14127, 31dividi 11638 . . . . . . . . . . . . . . . . . . 19 (π / π) = 1
142141oveq1i 7265 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (1 / 2)
143136, 140, 1423eqtr2i 2772 . . . . . . . . . . . . . . . . 17 (π / (2 · π)) = (1 / 2)
144 halflt1 12121 . . . . . . . . . . . . . . . . 17 (1 / 2) < 1
145143, 144eqbrtri 5091 . . . . . . . . . . . . . . . 16 (π / (2 · π)) < 1
146145a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) < 1)
147132, 133, 122, 146ltadd2dd 11064 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) < ((𝑌 / (2 · π)) + 1))
148131, 147eqbrtrd 5092 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + π) / (2 · π)) < ((𝑌 / (2 · π)) + 1))
149129, 148eqbrtrid 5105 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
15155, 121, 125, 128, 150lttrd 11066 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
152151adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
153 btwnnz 12326 . . . . . . . . 9 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
154104, 118, 152, 153syl3anc 1369 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
155103, 154pm2.61dan 809 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
15633, 155eqneltrd 2858 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
15725halfcld 12148 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
158 sineq0 25585 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
159157, 158syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
160156, 159mtbird 324 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
161160neqned 2949 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
16233oveq1d 7270 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑦 / 2) / π) + (1 / 2)) = ((𝑦 / (2 · π)) + (1 / 2)))
16342adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℤ)
1641a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = (𝑌 − π))
165164oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + π) = ((𝑌 − π) + π))
16660, 130npcand 11266 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − π) + π) = 𝑌)
167165, 166eqtr2d 2779 . . . . . . . . . . . 12 (𝜑𝑌 = (𝐴 + π))
168167oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 + π) / (2 · π)))
16948recnd 10934 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
170169, 130, 56, 53divdird 11719 . . . . . . . . . . 11 (𝜑 → ((𝐴 + π) / (2 · π)) = ((𝐴 / (2 · π)) + (π / (2 · π))))
171130mulid1d 10923 . . . . . . . . . . . . . . 15 (𝜑 → (π · 1) = π)
172171eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑 → π = (π · 1))
173 2cnd 11981 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
174173, 130mulcomd 10927 . . . . . . . . . . . . . 14 (𝜑 → (2 · π) = (π · 2))
175172, 174oveq12d 7273 . . . . . . . . . . . . 13 (𝜑 → (π / (2 · π)) = ((π · 1) / (π · 2)))
176 1cnd 10901 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
17729a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
17831a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ≠ 0)
179176, 173, 130, 177, 178divcan5d 11707 . . . . . . . . . . . . 13 (𝜑 → ((π · 1) / (π · 2)) = (1 / 2))
180175, 179eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (π / (2 · π)) = (1 / 2))
181180oveq2d 7271 . . . . . . . . . . 11 (𝜑 → ((𝐴 / (2 · π)) + (π / (2 · π))) = ((𝐴 / (2 · π)) + (1 / 2)))
182168, 170, 1813eqtrd 2782 . . . . . . . . . 10 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
183182adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
184124rehalfcld 12150 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
18550, 55, 184, 87ltadd1dd 11516 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐴 / (2 · π)) + (1 / 2)) < ((𝑦 / (2 · π)) + (1 / 2)))
186183, 185eqbrtrd 5092 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)))
18755, 121, 184, 128ltadd1dd 11516 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝐵 / (2 · π)) + (1 / 2)))
188129a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π)))
189188oveq1d 7270 . . . . . . . . . . 11 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = (((𝑌 + π) / (2 · π)) + (1 / 2)))
190180oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) = ((𝑌 / (2 · π)) + (1 / 2)))
191131, 190eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (1 / 2)))
192191oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (((𝑌 + π) / (2 · π)) + (1 / 2)) = (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)))
193176halfcld 12148 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
19495, 193, 193addassd 10928 . . . . . . . . . . . 12 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))))
1951762halvesd 12149 . . . . . . . . . . . . 13 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
196195oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))) = ((𝑌 / (2 · π)) + 1))
197194, 196eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
198189, 192, 1973eqtrd 2782 . . . . . . . . . 10 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
199198adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
200187, 199breqtrd 5096 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1))
201 btwnnz 12326 . . . . . . . 8 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)) ∧ ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1)) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
202163, 186, 200, 201syl3anc 1369 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
203162, 202eqneltrd 2858 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ)
204 coseq0 43295 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
205157, 204syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
206203, 205mtbird 324 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (cos‘(𝑦 / 2)) = 0)
207206neqned 2949 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
208161, 207jca 511 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
209208ralrimiva 3107 . 2 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
21021, 209jca 511 1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  (,)cioo 13008   mod cmo 13517  sincsin 15701  cosccos 15702  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dirkercncflem3  43536
  Copyright terms: Public domain W3C validator