Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem1 Structured version   Visualization version   GIF version

Theorem dirkercncflem1 46075
Description: If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem1.a 𝐴 = (𝑌 − π)
dirkercncflem1.b 𝐵 = (𝑌 + π)
dirkercncflem1.y (𝜑𝑌 ∈ ℝ)
dirkercncflem1.ymod0 (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Distinct variable groups:   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem dirkercncflem1
StepHypRef Expression
1 dirkercncflem1.a . . . 4 𝐴 = (𝑌 − π)
2 dirkercncflem1.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
3 pire 26436 . . . . . . 7 π ∈ ℝ
43a1i 11 . . . . . 6 (𝜑 → π ∈ ℝ)
52, 4resubcld 11673 . . . . 5 (𝜑 → (𝑌 − π) ∈ ℝ)
65rexrd 11293 . . . 4 (𝜑 → (𝑌 − π) ∈ ℝ*)
71, 6eqeltrid 2837 . . 3 (𝜑𝐴 ∈ ℝ*)
8 dirkercncflem1.b . . . 4 𝐵 = (𝑌 + π)
92, 4readdcld 11272 . . . . 5 (𝜑 → (𝑌 + π) ∈ ℝ)
109rexrd 11293 . . . 4 (𝜑 → (𝑌 + π) ∈ ℝ*)
118, 10eqeltrid 2837 . . 3 (𝜑𝐵 ∈ ℝ*)
12 pipos 26438 . . . . . 6 0 < π
13 ltsubpos 11737 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ (𝑌 − π) < 𝑌))
1412, 13mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑌 − π) < 𝑌)
154, 2, 14syl2anc 584 . . . 4 (𝜑 → (𝑌 − π) < 𝑌)
161, 15eqbrtrid 5158 . . 3 (𝜑𝐴 < 𝑌)
17 ltaddpos 11735 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ 𝑌 < (𝑌 + π)))
1812, 17mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 < (𝑌 + π))
194, 2, 18syl2anc 584 . . . 4 (𝜑𝑌 < (𝑌 + π))
2019, 8breqtrrdi 5165 . . 3 (𝜑𝑌 < 𝐵)
217, 11, 2, 16, 20eliood 45468 . 2 (𝜑𝑌 ∈ (𝐴(,)𝐵))
22 eldifi 4111 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
2322elioored 45519 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℝ)
2423adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
2524recnd 11271 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
26 2cnd 12326 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
27 picn 26437 . . . . . . . . 9 π ∈ ℂ
2827a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
29 2ne0 12352 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
313, 12gt0ne0ii 11781 . . . . . . . . 9 π ≠ 0
3231a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
3325, 26, 28, 30, 32divdiv1d 12056 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem1.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) = 0)
35 2rp 13021 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
37 pirp 26439 . . . . . . . . . . . . . . 15 π ∈ ℝ+
3837a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ+)
3936, 38rpmulcld 13075 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ+)
40 mod0 13898 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
412, 39, 40syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
4234, 41mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
43 peano2zm 12643 . . . . . . . . . . 11 ((𝑌 / (2 · π)) ∈ ℤ → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4544ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4644zred 12705 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
481, 5eqeltrid 2837 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
4948, 39rerpdivcld 13090 . . . . . . . . . . . 12 (𝜑 → (𝐴 / (2 · π)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) ∈ ℝ)
5139rpred 13059 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
5339rpne0d 13064 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ≠ 0)
5453adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ≠ 0)
5524, 52, 54redivcld 12077 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) ∈ ℝ)
5651recnd 11271 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · π) ∈ ℂ)
5756, 53dividd 12023 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · π) / (2 · π)) = 1)
5857eqcomd 2740 . . . . . . . . . . . . . . 15 (𝜑 → 1 = ((2 · π) / (2 · π)))
5958oveq2d 7429 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
602recnd 11271 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℂ)
6160, 56, 56, 53divsubdird 12064 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
6259, 61eqtr4d 2772 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 − (2 · π)) / (2 · π)))
632, 51resubcld 11673 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) ∈ ℝ)
6427mullidi 11248 . . . . . . . . . . . . . . . . . . 19 (1 · π) = π
6564eqcomi 2743 . . . . . . . . . . . . . . . . . 18 π = (1 · π)
66 1lt2 12419 . . . . . . . . . . . . . . . . . . 19 1 < 2
67 1re 11243 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
68 2re 12322 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
6967, 68, 3, 12ltmul1ii 12178 . . . . . . . . . . . . . . . . . . 19 (1 < 2 ↔ (1 · π) < (2 · π))
7066, 69mpbi 230 . . . . . . . . . . . . . . . . . 18 (1 · π) < (2 · π)
7165, 70eqbrtri 5144 . . . . . . . . . . . . . . . . 17 π < (2 · π)
7271a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π < (2 · π))
734, 51, 2, 72ltsub2dd 11858 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 − (2 · π)) < (𝑌 − π))
7473, 1breqtrrdi 5165 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) < 𝐴)
7563, 48, 39, 74ltdiv1dd 13116 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) < (𝐴 / (2 · π)))
7662, 75eqbrtrd 5145 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7776adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7848adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ)
7939adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ+)
8022adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ (𝐴(,)𝐵))
817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ*)
8211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ*)
83 elioo2 13410 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8580, 84mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
8685simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 < 𝑦)
8778, 24, 79, 86ltdiv1dd 13116 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) < (𝑦 / (2 · π)))
8847, 50, 55, 77, 87lttrd 11404 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
8988adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
9023ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
912ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
9239ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
93 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 < 𝑌)
9490, 91, 92, 93ltdiv1dd 13116 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (𝑌 / (2 · π)))
9560, 56, 53divcld 12025 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℂ)
97 1cnd 11238 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
9896, 97npcand 11606 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑌 / (2 · π)) − 1) + 1) = (𝑌 / (2 · π)))
9998eqcomd 2740 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10194, 100breqtrd 5149 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1))
102 btwnnz 12677 . . . . . . . . 9 ((((𝑌 / (2 · π)) − 1) ∈ ℤ ∧ ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10345, 89, 101, 102syl3anc 1372 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10442ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) ∈ ℤ)
1052ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
10624adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
10779adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
10824adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 ∈ ℝ)
1092ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦𝑌)
111 eldifsni 4770 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦𝑌)
112111necomd 2986 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑌𝑦)
113112ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌𝑦)
114108, 109, 110, 113leneltd 11397 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 < 𝑌)
115114stoic1a 1771 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ 𝑦𝑌)
116105, 106ltnled 11390 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 < 𝑦 ↔ ¬ 𝑦𝑌))
117115, 116mpbird 257 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 < 𝑦)
118105, 106, 107, 117ltdiv1dd 13116 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) < (𝑦 / (2 · π)))
1198, 9eqeltrid 2837 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
120119, 39rerpdivcld 13090 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) ∈ ℝ)
121120adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) ∈ ℝ)
1222, 39rerpdivcld 13090 . . . . . . . . . . . . 13 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
123122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℝ)
124 1red 11244 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℝ)
125123, 124readdcld 11272 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) + 1) ∈ ℝ)
126119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ)
12785simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 < 𝐵)
12824, 126, 79, 127ltdiv1dd 13116 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < (𝐵 / (2 · π)))
1298oveq1i 7423 . . . . . . . . . . . . 13 (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π))
13027a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
13160, 130, 56, 53divdird 12063 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (π / (2 · π))))
1324, 39rerpdivcld 13090 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) ∈ ℝ)
133 1red 11244 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
134 2cn 12323 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
135134, 27mulcomi 11251 . . . . . . . . . . . . . . . . . . 19 (2 · π) = (π · 2)
136135oveq2i 7424 . . . . . . . . . . . . . . . . . 18 (π / (2 · π)) = (π / (π · 2))
13727, 31pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℂ ∧ π ≠ 0)
138 2cnne0 12458 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ ∧ 2 ≠ 0)
139 divdiv1 11960 . . . . . . . . . . . . . . . . . . 19 ((π ∈ ℂ ∧ (π ∈ ℂ ∧ π ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / π) / 2) = (π / (π · 2)))
14027, 137, 138, 139mp3an 1462 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (π / (π · 2))
14127, 31dividi 11982 . . . . . . . . . . . . . . . . . . 19 (π / π) = 1
142141oveq1i 7423 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (1 / 2)
143136, 140, 1423eqtr2i 2763 . . . . . . . . . . . . . . . . 17 (π / (2 · π)) = (1 / 2)
144 halflt1 12466 . . . . . . . . . . . . . . . . 17 (1 / 2) < 1
145143, 144eqbrtri 5144 . . . . . . . . . . . . . . . 16 (π / (2 · π)) < 1
146145a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) < 1)
147132, 133, 122, 146ltadd2dd 11402 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) < ((𝑌 / (2 · π)) + 1))
148131, 147eqbrtrd 5145 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + π) / (2 · π)) < ((𝑌 / (2 · π)) + 1))
149129, 148eqbrtrid 5158 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
15155, 121, 125, 128, 150lttrd 11404 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
152151adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
153 btwnnz 12677 . . . . . . . . 9 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
154104, 118, 152, 153syl3anc 1372 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
155103, 154pm2.61dan 812 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
15633, 155eqneltrd 2853 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
15725halfcld 12494 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
158 sineq0 26502 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
159157, 158syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
160156, 159mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
161160neqned 2938 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
16233oveq1d 7428 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑦 / 2) / π) + (1 / 2)) = ((𝑦 / (2 · π)) + (1 / 2)))
16342adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℤ)
1641a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = (𝑌 − π))
165164oveq1d 7428 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + π) = ((𝑌 − π) + π))
16660, 130npcand 11606 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − π) + π) = 𝑌)
167165, 166eqtr2d 2770 . . . . . . . . . . . 12 (𝜑𝑌 = (𝐴 + π))
168167oveq1d 7428 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 + π) / (2 · π)))
16948recnd 11271 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
170169, 130, 56, 53divdird 12063 . . . . . . . . . . 11 (𝜑 → ((𝐴 + π) / (2 · π)) = ((𝐴 / (2 · π)) + (π / (2 · π))))
171130mulridd 11260 . . . . . . . . . . . . . . 15 (𝜑 → (π · 1) = π)
172171eqcomd 2740 . . . . . . . . . . . . . 14 (𝜑 → π = (π · 1))
173 2cnd 12326 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
174173, 130mulcomd 11264 . . . . . . . . . . . . . 14 (𝜑 → (2 · π) = (π · 2))
175172, 174oveq12d 7431 . . . . . . . . . . . . 13 (𝜑 → (π / (2 · π)) = ((π · 1) / (π · 2)))
176 1cnd 11238 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
17729a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
17831a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ≠ 0)
179176, 173, 130, 177, 178divcan5d 12051 . . . . . . . . . . . . 13 (𝜑 → ((π · 1) / (π · 2)) = (1 / 2))
180175, 179eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → (π / (2 · π)) = (1 / 2))
181180oveq2d 7429 . . . . . . . . . . 11 (𝜑 → ((𝐴 / (2 · π)) + (π / (2 · π))) = ((𝐴 / (2 · π)) + (1 / 2)))
182168, 170, 1813eqtrd 2773 . . . . . . . . . 10 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
183182adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
184124rehalfcld 12496 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
18550, 55, 184, 87ltadd1dd 11856 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐴 / (2 · π)) + (1 / 2)) < ((𝑦 / (2 · π)) + (1 / 2)))
186183, 185eqbrtrd 5145 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)))
18755, 121, 184, 128ltadd1dd 11856 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝐵 / (2 · π)) + (1 / 2)))
188129a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π)))
189188oveq1d 7428 . . . . . . . . . . 11 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = (((𝑌 + π) / (2 · π)) + (1 / 2)))
190180oveq2d 7429 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) = ((𝑌 / (2 · π)) + (1 / 2)))
191131, 190eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (1 / 2)))
192191oveq1d 7428 . . . . . . . . . . 11 (𝜑 → (((𝑌 + π) / (2 · π)) + (1 / 2)) = (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)))
193176halfcld 12494 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
19495, 193, 193addassd 11265 . . . . . . . . . . . 12 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))))
1951762halvesd 12495 . . . . . . . . . . . . 13 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
196195oveq2d 7429 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))) = ((𝑌 / (2 · π)) + 1))
197194, 196eqtrd 2769 . . . . . . . . . . 11 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
198189, 192, 1973eqtrd 2773 . . . . . . . . . 10 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
199198adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
200187, 199breqtrd 5149 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1))
201 btwnnz 12677 . . . . . . . 8 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)) ∧ ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1)) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
202163, 186, 200, 201syl3anc 1372 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
203162, 202eqneltrd 2853 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ)
204 coseq0 45836 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
205157, 204syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
206203, 205mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (cos‘(𝑦 / 2)) = 0)
207206neqned 2938 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
208161, 207jca 511 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
209208ralrimiva 3133 . 2 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
21021, 209jca 511 1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  cdif 3928  {csn 4606   class class class wbr 5123  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  *cxr 11276   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  2c2 12303  cz 12596  +crp 13016  (,)cioo 13369   mod cmo 13891  sincsin 16081  cosccos 16082  πcpi 16084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838
This theorem is referenced by:  dirkercncflem3  46077
  Copyright terms: Public domain W3C validator