Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem1 Structured version   Visualization version   GIF version

Theorem dirkercncflem1 46088
Description: If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem1.a 𝐴 = (𝑌 − π)
dirkercncflem1.b 𝐵 = (𝑌 + π)
dirkercncflem1.y (𝜑𝑌 ∈ ℝ)
dirkercncflem1.ymod0 (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Distinct variable groups:   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem dirkercncflem1
StepHypRef Expression
1 dirkercncflem1.a . . . 4 𝐴 = (𝑌 − π)
2 dirkercncflem1.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
3 pire 26382 . . . . . . 7 π ∈ ℝ
43a1i 11 . . . . . 6 (𝜑 → π ∈ ℝ)
52, 4resubcld 11566 . . . . 5 (𝜑 → (𝑌 − π) ∈ ℝ)
65rexrd 11184 . . . 4 (𝜑 → (𝑌 − π) ∈ ℝ*)
71, 6eqeltrid 2832 . . 3 (𝜑𝐴 ∈ ℝ*)
8 dirkercncflem1.b . . . 4 𝐵 = (𝑌 + π)
92, 4readdcld 11163 . . . . 5 (𝜑 → (𝑌 + π) ∈ ℝ)
109rexrd 11184 . . . 4 (𝜑 → (𝑌 + π) ∈ ℝ*)
118, 10eqeltrid 2832 . . 3 (𝜑𝐵 ∈ ℝ*)
12 pipos 26384 . . . . . 6 0 < π
13 ltsubpos 11630 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ (𝑌 − π) < 𝑌))
1412, 13mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑌 − π) < 𝑌)
154, 2, 14syl2anc 584 . . . 4 (𝜑 → (𝑌 − π) < 𝑌)
161, 15eqbrtrid 5130 . . 3 (𝜑𝐴 < 𝑌)
17 ltaddpos 11628 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ 𝑌 < (𝑌 + π)))
1812, 17mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 < (𝑌 + π))
194, 2, 18syl2anc 584 . . . 4 (𝜑𝑌 < (𝑌 + π))
2019, 8breqtrrdi 5137 . . 3 (𝜑𝑌 < 𝐵)
217, 11, 2, 16, 20eliood 45483 . 2 (𝜑𝑌 ∈ (𝐴(,)𝐵))
22 eldifi 4084 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
2322elioored 45534 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℝ)
2423adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
2524recnd 11162 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
26 2cnd 12224 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
27 picn 26383 . . . . . . . . 9 π ∈ ℂ
2827a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
29 2ne0 12250 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
313, 12gt0ne0ii 11674 . . . . . . . . 9 π ≠ 0
3231a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
3325, 26, 28, 30, 32divdiv1d 11949 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem1.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) = 0)
35 2rp 12916 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
37 pirp 26386 . . . . . . . . . . . . . . 15 π ∈ ℝ+
3837a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ+)
3936, 38rpmulcld 12971 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ+)
40 mod0 13798 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
412, 39, 40syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
4234, 41mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
43 peano2zm 12536 . . . . . . . . . . 11 ((𝑌 / (2 · π)) ∈ ℤ → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4544ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4644zred 12598 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
481, 5eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
4948, 39rerpdivcld 12986 . . . . . . . . . . . 12 (𝜑 → (𝐴 / (2 · π)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) ∈ ℝ)
5139rpred 12955 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
5339rpne0d 12960 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ≠ 0)
5453adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ≠ 0)
5524, 52, 54redivcld 11970 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) ∈ ℝ)
5651recnd 11162 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · π) ∈ ℂ)
5756, 53dividd 11916 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · π) / (2 · π)) = 1)
5857eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 1 = ((2 · π) / (2 · π)))
5958oveq2d 7369 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
602recnd 11162 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℂ)
6160, 56, 56, 53divsubdird 11957 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
6259, 61eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 − (2 · π)) / (2 · π)))
632, 51resubcld 11566 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) ∈ ℝ)
6427mullidi 11139 . . . . . . . . . . . . . . . . . . 19 (1 · π) = π
6564eqcomi 2738 . . . . . . . . . . . . . . . . . 18 π = (1 · π)
66 1lt2 12312 . . . . . . . . . . . . . . . . . . 19 1 < 2
67 1re 11134 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
68 2re 12220 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
6967, 68, 3, 12ltmul1ii 12071 . . . . . . . . . . . . . . . . . . 19 (1 < 2 ↔ (1 · π) < (2 · π))
7066, 69mpbi 230 . . . . . . . . . . . . . . . . . 18 (1 · π) < (2 · π)
7165, 70eqbrtri 5116 . . . . . . . . . . . . . . . . 17 π < (2 · π)
7271a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π < (2 · π))
734, 51, 2, 72ltsub2dd 11751 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 − (2 · π)) < (𝑌 − π))
7473, 1breqtrrdi 5137 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) < 𝐴)
7563, 48, 39, 74ltdiv1dd 13012 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) < (𝐴 / (2 · π)))
7662, 75eqbrtrd 5117 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7776adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7848adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ)
7939adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ+)
8022adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ (𝐴(,)𝐵))
817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ*)
8211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ*)
83 elioo2 13307 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8580, 84mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
8685simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 < 𝑦)
8778, 24, 79, 86ltdiv1dd 13012 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) < (𝑦 / (2 · π)))
8847, 50, 55, 77, 87lttrd 11295 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
8988adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
9023ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
912ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
9239ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
93 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 < 𝑌)
9490, 91, 92, 93ltdiv1dd 13012 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (𝑌 / (2 · π)))
9560, 56, 53divcld 11918 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℂ)
97 1cnd 11129 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
9896, 97npcand 11497 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑌 / (2 · π)) − 1) + 1) = (𝑌 / (2 · π)))
9998eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10194, 100breqtrd 5121 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1))
102 btwnnz 12570 . . . . . . . . 9 ((((𝑌 / (2 · π)) − 1) ∈ ℤ ∧ ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10345, 89, 101, 102syl3anc 1373 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10442ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) ∈ ℤ)
1052ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
10624adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
10779adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
10824adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 ∈ ℝ)
1092ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦𝑌)
111 eldifsni 4744 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦𝑌)
112111necomd 2980 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑌𝑦)
113112ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌𝑦)
114108, 109, 110, 113leneltd 11288 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 < 𝑌)
115114stoic1a 1772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ 𝑦𝑌)
116105, 106ltnled 11281 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 < 𝑦 ↔ ¬ 𝑦𝑌))
117115, 116mpbird 257 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 < 𝑦)
118105, 106, 107, 117ltdiv1dd 13012 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) < (𝑦 / (2 · π)))
1198, 9eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
120119, 39rerpdivcld 12986 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) ∈ ℝ)
121120adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) ∈ ℝ)
1222, 39rerpdivcld 12986 . . . . . . . . . . . . 13 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
123122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℝ)
124 1red 11135 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℝ)
125123, 124readdcld 11163 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) + 1) ∈ ℝ)
126119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ)
12785simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 < 𝐵)
12824, 126, 79, 127ltdiv1dd 13012 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < (𝐵 / (2 · π)))
1298oveq1i 7363 . . . . . . . . . . . . 13 (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π))
13027a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
13160, 130, 56, 53divdird 11956 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (π / (2 · π))))
1324, 39rerpdivcld 12986 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) ∈ ℝ)
133 1red 11135 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
134 2cn 12221 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
135134, 27mulcomi 11142 . . . . . . . . . . . . . . . . . . 19 (2 · π) = (π · 2)
136135oveq2i 7364 . . . . . . . . . . . . . . . . . 18 (π / (2 · π)) = (π / (π · 2))
13727, 31pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℂ ∧ π ≠ 0)
138 2cnne0 12351 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ ∧ 2 ≠ 0)
139 divdiv1 11853 . . . . . . . . . . . . . . . . . . 19 ((π ∈ ℂ ∧ (π ∈ ℂ ∧ π ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / π) / 2) = (π / (π · 2)))
14027, 137, 138, 139mp3an 1463 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (π / (π · 2))
14127, 31dividi 11875 . . . . . . . . . . . . . . . . . . 19 (π / π) = 1
142141oveq1i 7363 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (1 / 2)
143136, 140, 1423eqtr2i 2758 . . . . . . . . . . . . . . . . 17 (π / (2 · π)) = (1 / 2)
144 halflt1 12359 . . . . . . . . . . . . . . . . 17 (1 / 2) < 1
145143, 144eqbrtri 5116 . . . . . . . . . . . . . . . 16 (π / (2 · π)) < 1
146145a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) < 1)
147132, 133, 122, 146ltadd2dd 11293 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) < ((𝑌 / (2 · π)) + 1))
148131, 147eqbrtrd 5117 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + π) / (2 · π)) < ((𝑌 / (2 · π)) + 1))
149129, 148eqbrtrid 5130 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
15155, 121, 125, 128, 150lttrd 11295 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
152151adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
153 btwnnz 12570 . . . . . . . . 9 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
154104, 118, 152, 153syl3anc 1373 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
155103, 154pm2.61dan 812 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
15633, 155eqneltrd 2848 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
15725halfcld 12387 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
158 sineq0 26449 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
159157, 158syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
160156, 159mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
161160neqned 2932 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
16233oveq1d 7368 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑦 / 2) / π) + (1 / 2)) = ((𝑦 / (2 · π)) + (1 / 2)))
16342adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℤ)
1641a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = (𝑌 − π))
165164oveq1d 7368 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + π) = ((𝑌 − π) + π))
16660, 130npcand 11497 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − π) + π) = 𝑌)
167165, 166eqtr2d 2765 . . . . . . . . . . . 12 (𝜑𝑌 = (𝐴 + π))
168167oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 + π) / (2 · π)))
16948recnd 11162 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
170169, 130, 56, 53divdird 11956 . . . . . . . . . . 11 (𝜑 → ((𝐴 + π) / (2 · π)) = ((𝐴 / (2 · π)) + (π / (2 · π))))
171130mulridd 11151 . . . . . . . . . . . . . . 15 (𝜑 → (π · 1) = π)
172171eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → π = (π · 1))
173 2cnd 12224 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
174173, 130mulcomd 11155 . . . . . . . . . . . . . 14 (𝜑 → (2 · π) = (π · 2))
175172, 174oveq12d 7371 . . . . . . . . . . . . 13 (𝜑 → (π / (2 · π)) = ((π · 1) / (π · 2)))
176 1cnd 11129 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
17729a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
17831a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ≠ 0)
179176, 173, 130, 177, 178divcan5d 11944 . . . . . . . . . . . . 13 (𝜑 → ((π · 1) / (π · 2)) = (1 / 2))
180175, 179eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (π / (2 · π)) = (1 / 2))
181180oveq2d 7369 . . . . . . . . . . 11 (𝜑 → ((𝐴 / (2 · π)) + (π / (2 · π))) = ((𝐴 / (2 · π)) + (1 / 2)))
182168, 170, 1813eqtrd 2768 . . . . . . . . . 10 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
183182adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
184124rehalfcld 12389 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
18550, 55, 184, 87ltadd1dd 11749 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐴 / (2 · π)) + (1 / 2)) < ((𝑦 / (2 · π)) + (1 / 2)))
186183, 185eqbrtrd 5117 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)))
18755, 121, 184, 128ltadd1dd 11749 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝐵 / (2 · π)) + (1 / 2)))
188129a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π)))
189188oveq1d 7368 . . . . . . . . . . 11 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = (((𝑌 + π) / (2 · π)) + (1 / 2)))
190180oveq2d 7369 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) = ((𝑌 / (2 · π)) + (1 / 2)))
191131, 190eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (1 / 2)))
192191oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (((𝑌 + π) / (2 · π)) + (1 / 2)) = (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)))
193176halfcld 12387 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
19495, 193, 193addassd 11156 . . . . . . . . . . . 12 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))))
1951762halvesd 12388 . . . . . . . . . . . . 13 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
196195oveq2d 7369 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))) = ((𝑌 / (2 · π)) + 1))
197194, 196eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
198189, 192, 1973eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
199198adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
200187, 199breqtrd 5121 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1))
201 btwnnz 12570 . . . . . . . 8 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)) ∧ ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1)) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
202163, 186, 200, 201syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
203162, 202eqneltrd 2848 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ)
204 coseq0 45849 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
205157, 204syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
206203, 205mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (cos‘(𝑦 / 2)) = 0)
207206neqned 2932 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
208161, 207jca 511 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
209208ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
21021, 209jca 511 1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3902  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  cz 12489  +crp 12911  (,)cioo 13266   mod cmo 13791  sincsin 15988  cosccos 15989  πcpi 15991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  dirkercncflem3  46090
  Copyright terms: Public domain W3C validator