Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem1 Structured version   Visualization version   GIF version

Theorem dirkercncflem1 46123
Description: If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem1.a 𝐴 = (𝑌 − π)
dirkercncflem1.b 𝐵 = (𝑌 + π)
dirkercncflem1.y (𝜑𝑌 ∈ ℝ)
dirkercncflem1.ymod0 (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Distinct variable groups:   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem dirkercncflem1
StepHypRef Expression
1 dirkercncflem1.a . . . 4 𝐴 = (𝑌 − π)
2 dirkercncflem1.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
3 pire 26501 . . . . . . 7 π ∈ ℝ
43a1i 11 . . . . . 6 (𝜑 → π ∈ ℝ)
52, 4resubcld 11692 . . . . 5 (𝜑 → (𝑌 − π) ∈ ℝ)
65rexrd 11312 . . . 4 (𝜑 → (𝑌 − π) ∈ ℝ*)
71, 6eqeltrid 2844 . . 3 (𝜑𝐴 ∈ ℝ*)
8 dirkercncflem1.b . . . 4 𝐵 = (𝑌 + π)
92, 4readdcld 11291 . . . . 5 (𝜑 → (𝑌 + π) ∈ ℝ)
109rexrd 11312 . . . 4 (𝜑 → (𝑌 + π) ∈ ℝ*)
118, 10eqeltrid 2844 . . 3 (𝜑𝐵 ∈ ℝ*)
12 pipos 26503 . . . . . 6 0 < π
13 ltsubpos 11756 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ (𝑌 − π) < 𝑌))
1412, 13mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑌 − π) < 𝑌)
154, 2, 14syl2anc 584 . . . 4 (𝜑 → (𝑌 − π) < 𝑌)
161, 15eqbrtrid 5177 . . 3 (𝜑𝐴 < 𝑌)
17 ltaddpos 11754 . . . . . 6 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → (0 < π ↔ 𝑌 < (𝑌 + π)))
1812, 17mpbii 233 . . . . 5 ((π ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 < (𝑌 + π))
194, 2, 18syl2anc 584 . . . 4 (𝜑𝑌 < (𝑌 + π))
2019, 8breqtrrdi 5184 . . 3 (𝜑𝑌 < 𝐵)
217, 11, 2, 16, 20eliood 45516 . 2 (𝜑𝑌 ∈ (𝐴(,)𝐵))
22 eldifi 4130 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
2322elioored 45567 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℝ)
2423adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
2524recnd 11290 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
26 2cnd 12345 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
27 picn 26502 . . . . . . . . 9 π ∈ ℂ
2827a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
29 2ne0 12371 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
313, 12gt0ne0ii 11800 . . . . . . . . 9 π ≠ 0
3231a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
3325, 26, 28, 30, 32divdiv1d 12075 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem1.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) = 0)
35 2rp 13040 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
37 pirp 26504 . . . . . . . . . . . . . . 15 π ∈ ℝ+
3837a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ+)
3936, 38rpmulcld 13094 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ+)
40 mod0 13917 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
412, 39, 40syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
4234, 41mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
43 peano2zm 12662 . . . . . . . . . . 11 ((𝑌 / (2 · π)) ∈ ℤ → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4544ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) ∈ ℤ)
4644zred 12724 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) ∈ ℝ)
481, 5eqeltrid 2844 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
4948, 39rerpdivcld 13109 . . . . . . . . . . . 12 (𝜑 → (𝐴 / (2 · π)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) ∈ ℝ)
5139rpred 13078 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
5339rpne0d 13083 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ≠ 0)
5453adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ≠ 0)
5524, 52, 54redivcld 12096 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) ∈ ℝ)
5651recnd 11290 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · π) ∈ ℂ)
5756, 53dividd 12042 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · π) / (2 · π)) = 1)
5857eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑 → 1 = ((2 · π) / (2 · π)))
5958oveq2d 7448 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
602recnd 11290 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℂ)
6160, 56, 56, 53divsubdird 12083 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) = ((𝑌 / (2 · π)) − ((2 · π) / (2 · π))))
6259, 61eqtr4d 2779 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) − 1) = ((𝑌 − (2 · π)) / (2 · π)))
632, 51resubcld 11692 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) ∈ ℝ)
6427mullidi 11267 . . . . . . . . . . . . . . . . . . 19 (1 · π) = π
6564eqcomi 2745 . . . . . . . . . . . . . . . . . 18 π = (1 · π)
66 1lt2 12438 . . . . . . . . . . . . . . . . . . 19 1 < 2
67 1re 11262 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
68 2re 12341 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
6967, 68, 3, 12ltmul1ii 12197 . . . . . . . . . . . . . . . . . . 19 (1 < 2 ↔ (1 · π) < (2 · π))
7066, 69mpbi 230 . . . . . . . . . . . . . . . . . 18 (1 · π) < (2 · π)
7165, 70eqbrtri 5163 . . . . . . . . . . . . . . . . 17 π < (2 · π)
7271a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π < (2 · π))
734, 51, 2, 72ltsub2dd 11877 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 − (2 · π)) < (𝑌 − π))
7473, 1breqtrrdi 5184 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (2 · π)) < 𝐴)
7563, 48, 39, 74ltdiv1dd 13135 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (2 · π)) / (2 · π)) < (𝐴 / (2 · π)))
7662, 75eqbrtrd 5164 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7776adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝐴 / (2 · π)))
7848adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ)
7939adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ+)
8022adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ (𝐴(,)𝐵))
817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 ∈ ℝ*)
8211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ*)
83 elioo2 13429 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
8580, 84mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
8685simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐴 < 𝑦)
8778, 24, 79, 86ltdiv1dd 13135 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐴 / (2 · π)) < (𝑦 / (2 · π)))
8847, 50, 55, 77, 87lttrd 11423 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
8988adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)))
9023ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
912ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
9239ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
93 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → 𝑦 < 𝑌)
9490, 91, 92, 93ltdiv1dd 13135 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (𝑌 / (2 · π)))
9560, 56, 53divcld 12044 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℂ)
97 1cnd 11257 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
9896, 97npcand 11625 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑌 / (2 · π)) − 1) + 1) = (𝑌 / (2 · π)))
9998eqcomd 2742 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑌 / (2 · π)) = (((𝑌 / (2 · π)) − 1) + 1))
10194, 100breqtrd 5168 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1))
102 btwnnz 12696 . . . . . . . . 9 ((((𝑌 / (2 · π)) − 1) ∈ ℤ ∧ ((𝑌 / (2 · π)) − 1) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < (((𝑌 / (2 · π)) − 1) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10345, 89, 101, 102syl3anc 1372 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10442ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) ∈ ℤ)
1052ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 ∈ ℝ)
10624adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑦 ∈ ℝ)
10779adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (2 · π) ∈ ℝ+)
10824adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 ∈ ℝ)
1092ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦𝑌)
111 eldifsni 4789 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦𝑌)
112111necomd 2995 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑌𝑦)
113112ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑌𝑦)
114108, 109, 110, 113leneltd 11416 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦𝑌) → 𝑦 < 𝑌)
115114stoic1a 1771 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ 𝑦𝑌)
116105, 106ltnled 11409 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 < 𝑦 ↔ ¬ 𝑦𝑌))
117115, 116mpbird 257 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → 𝑌 < 𝑦)
118105, 106, 107, 117ltdiv1dd 13135 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑌 / (2 · π)) < (𝑦 / (2 · π)))
1198, 9eqeltrid 2844 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
120119, 39rerpdivcld 13109 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) ∈ ℝ)
121120adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) ∈ ℝ)
1222, 39rerpdivcld 13109 . . . . . . . . . . . . 13 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
123122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℝ)
124 1red 11263 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℝ)
125123, 124readdcld 11291 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑌 / (2 · π)) + 1) ∈ ℝ)
126119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐵 ∈ ℝ)
12785simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 < 𝐵)
12824, 126, 79, 127ltdiv1dd 13135 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < (𝐵 / (2 · π)))
1298oveq1i 7442 . . . . . . . . . . . . 13 (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π))
13027a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
13160, 130, 56, 53divdird 12082 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (π / (2 · π))))
1324, 39rerpdivcld 13109 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) ∈ ℝ)
133 1red 11263 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
134 2cn 12342 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
135134, 27mulcomi 11270 . . . . . . . . . . . . . . . . . . 19 (2 · π) = (π · 2)
136135oveq2i 7443 . . . . . . . . . . . . . . . . . 18 (π / (2 · π)) = (π / (π · 2))
13727, 31pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℂ ∧ π ≠ 0)
138 2cnne0 12477 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ ∧ 2 ≠ 0)
139 divdiv1 11979 . . . . . . . . . . . . . . . . . . 19 ((π ∈ ℂ ∧ (π ∈ ℂ ∧ π ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / π) / 2) = (π / (π · 2)))
14027, 137, 138, 139mp3an 1462 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (π / (π · 2))
14127, 31dividi 12001 . . . . . . . . . . . . . . . . . . 19 (π / π) = 1
142141oveq1i 7442 . . . . . . . . . . . . . . . . . 18 ((π / π) / 2) = (1 / 2)
143136, 140, 1423eqtr2i 2770 . . . . . . . . . . . . . . . . 17 (π / (2 · π)) = (1 / 2)
144 halflt1 12485 . . . . . . . . . . . . . . . . 17 (1 / 2) < 1
145143, 144eqbrtri 5163 . . . . . . . . . . . . . . . 16 (π / (2 · π)) < 1
146145a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (π / (2 · π)) < 1)
147132, 133, 122, 146ltadd2dd 11421 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) < ((𝑌 / (2 · π)) + 1))
148131, 147eqbrtrd 5164 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + π) / (2 · π)) < ((𝑌 / (2 · π)) + 1))
149129, 148eqbrtrid 5177 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐵 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
15155, 121, 125, 128, 150lttrd 11423 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
152151adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1))
153 btwnnz 12696 . . . . . . . . 9 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝑌 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
154104, 118, 152, 153syl3anc 1372 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ¬ 𝑦 < 𝑌) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
155103, 154pm2.61dan 812 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
15633, 155eqneltrd 2860 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
15725halfcld 12513 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
158 sineq0 26567 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
159157, 158syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
160156, 159mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
161160neqned 2946 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
16233oveq1d 7447 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑦 / 2) / π) + (1 / 2)) = ((𝑦 / (2 · π)) + (1 / 2)))
16342adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) ∈ ℤ)
1641a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = (𝑌 − π))
165164oveq1d 7447 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + π) = ((𝑌 − π) + π))
16660, 130npcand 11625 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − π) + π) = 𝑌)
167165, 166eqtr2d 2777 . . . . . . . . . . . 12 (𝜑𝑌 = (𝐴 + π))
168167oveq1d 7447 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 + π) / (2 · π)))
16948recnd 11290 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
170169, 130, 56, 53divdird 12082 . . . . . . . . . . 11 (𝜑 → ((𝐴 + π) / (2 · π)) = ((𝐴 / (2 · π)) + (π / (2 · π))))
171130mulridd 11279 . . . . . . . . . . . . . . 15 (𝜑 → (π · 1) = π)
172171eqcomd 2742 . . . . . . . . . . . . . 14 (𝜑 → π = (π · 1))
173 2cnd 12345 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
174173, 130mulcomd 11283 . . . . . . . . . . . . . 14 (𝜑 → (2 · π) = (π · 2))
175172, 174oveq12d 7450 . . . . . . . . . . . . 13 (𝜑 → (π / (2 · π)) = ((π · 1) / (π · 2)))
176 1cnd 11257 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
17729a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
17831a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ≠ 0)
179176, 173, 130, 177, 178divcan5d 12070 . . . . . . . . . . . . 13 (𝜑 → ((π · 1) / (π · 2)) = (1 / 2))
180175, 179eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → (π / (2 · π)) = (1 / 2))
181180oveq2d 7448 . . . . . . . . . . 11 (𝜑 → ((𝐴 / (2 · π)) + (π / (2 · π))) = ((𝐴 / (2 · π)) + (1 / 2)))
182168, 170, 1813eqtrd 2780 . . . . . . . . . 10 (𝜑 → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
183182adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) = ((𝐴 / (2 · π)) + (1 / 2)))
184124rehalfcld 12515 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
18550, 55, 184, 87ltadd1dd 11875 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐴 / (2 · π)) + (1 / 2)) < ((𝑦 / (2 · π)) + (1 / 2)))
186183, 185eqbrtrd 5164 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)))
18755, 121, 184, 128ltadd1dd 11875 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝐵 / (2 · π)) + (1 / 2)))
188129a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐵 / (2 · π)) = ((𝑌 + π) / (2 · π)))
189188oveq1d 7447 . . . . . . . . . . 11 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = (((𝑌 + π) / (2 · π)) + (1 / 2)))
190180oveq2d 7448 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 / (2 · π)) + (π / (2 · π))) = ((𝑌 / (2 · π)) + (1 / 2)))
191131, 190eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + π) / (2 · π)) = ((𝑌 / (2 · π)) + (1 / 2)))
192191oveq1d 7447 . . . . . . . . . . 11 (𝜑 → (((𝑌 + π) / (2 · π)) + (1 / 2)) = (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)))
193176halfcld 12513 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
19495, 193, 193addassd 11284 . . . . . . . . . . . 12 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))))
1951762halvesd 12514 . . . . . . . . . . . . 13 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
196195oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → ((𝑌 / (2 · π)) + ((1 / 2) + (1 / 2))) = ((𝑌 / (2 · π)) + 1))
197194, 196eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (((𝑌 / (2 · π)) + (1 / 2)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
198189, 192, 1973eqtrd 2780 . . . . . . . . . 10 (𝜑 → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
199198adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐵 / (2 · π)) + (1 / 2)) = ((𝑌 / (2 · π)) + 1))
200187, 199breqtrd 5168 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1))
201 btwnnz 12696 . . . . . . . 8 (((𝑌 / (2 · π)) ∈ ℤ ∧ (𝑌 / (2 · π)) < ((𝑦 / (2 · π)) + (1 / 2)) ∧ ((𝑦 / (2 · π)) + (1 / 2)) < ((𝑌 / (2 · π)) + 1)) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
202163, 186, 200, 201syl3anc 1372 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / (2 · π)) + (1 / 2)) ∈ ℤ)
203162, 202eqneltrd 2860 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ)
204 coseq0 45884 . . . . . . 7 ((𝑦 / 2) ∈ ℂ → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
205157, 204syl 17 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((cos‘(𝑦 / 2)) = 0 ↔ (((𝑦 / 2) / π) + (1 / 2)) ∈ ℤ))
206203, 205mtbird 325 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (cos‘(𝑦 / 2)) = 0)
207206neqned 2946 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
208161, 207jca 511 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
209208ralrimiva 3145 . 2 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
21021, 209jca 511 1 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cdif 3947  {csn 4625   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  *cxr 11295   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  2c2 12322  cz 12615  +crp 13035  (,)cioo 13388   mod cmo 13910  sincsin 16100  cosccos 16101  πcpi 16103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  dirkercncflem3  46125
  Copyright terms: Public domain W3C validator