Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0npcan Structured version   Visualization version   GIF version

Theorem xrge0npcan 30676
Description: Extended nonnegative real version of npcan 10889. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0npcan ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xrge0npcan
StepHypRef Expression
1 iccssxr 12813 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2 simpl1 1187 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3965 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
4 simpr 487 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
5 simpl3 1189 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵𝐴)
64, 5eqbrtrrd 5083 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐴)
7 xgepnf 12552 . . . . . . . . 9 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
87biimpa 479 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ≤ 𝐴) → 𝐴 = +∞)
93, 6, 8syl2anc 586 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 = +∞)
10 xnegeq 12594 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
114, 10syl 17 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → -𝑒𝐵 = -𝑒+∞)
129, 11oveq12d 7168 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒+∞))
13 pnfxr 10689 . . . . . . 7 +∞ ∈ ℝ*
14 xnegid 12625 . . . . . . 7 (+∞ ∈ ℝ* → (+∞ +𝑒 -𝑒+∞) = 0)
1513, 14ax-mp 5 . . . . . 6 (+∞ +𝑒 -𝑒+∞) = 0
1612, 15syl6eq 2872 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = 0)
1716oveq1d 7165 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
184oveq2d 7166 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 𝐵) = (0 +𝑒 +∞))
19 xaddid2 12629 . . . . 5 (+∞ ∈ ℝ* → (0 +𝑒 +∞) = +∞)
2013, 19mp1i 13 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 +∞) = +∞)
2117, 18, 203eqtrd 2860 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = +∞)
2221, 9eqtr4d 2859 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
23 simpl1 1187 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
241, 23sseldi 3965 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
25 xrge0neqmnf 12834 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
2623, 25syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ≠ -∞)
27 simpl2 1188 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
281, 27sseldi 3965 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2928xnegcld 12687 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ∈ ℝ*)
30 simpr 487 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
31 xnegneg 12601 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
32 xnegeq 12594 . . . . . . . . 9 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
3331, 32sylan9req 2877 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = -𝑒-∞)
34 xnegmnf 12597 . . . . . . . 8 -𝑒-∞ = +∞
3533, 34syl6eq 2872 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = +∞)
3635stoic1a 1769 . . . . . 6 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → ¬ -𝑒𝐵 = -∞)
3736neqned 3023 . . . . 5 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
3828, 30, 37syl2anc 586 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
39 xrge0neqmnf 12834 . . . . 5 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
4027, 39syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
41 xaddass 12636 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
4224, 26, 29, 38, 28, 40, 41syl222anc 1382 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
43 xnegcl 12600 . . . . . . . 8 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
44 xaddcom 12627 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
4543, 44mpancom 686 . . . . . . 7 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
46 xnegid 12625 . . . . . . 7 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
4745, 46eqtrd 2856 . . . . . 6 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = 0)
4847oveq2d 7166 . . . . 5 (𝐵 ∈ ℝ* → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = (𝐴 +𝑒 0))
49 xaddid1 12628 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
5048, 49sylan9eqr 2878 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5124, 28, 50syl2anc 586 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5242, 51eqtrd 2856 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
5322, 52pm2.61dan 811 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5059  (class class class)co 7150  0cc0 10531  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668  cle 10670  -𝑒cxne 12498   +𝑒 cxad 12499  [,]cicc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-xneg 12501  df-xadd 12502  df-icc 12739
This theorem is referenced by:  esumle  31312  esumlef  31316  carsgclctunlem2  31572
  Copyright terms: Public domain W3C validator