Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0npcan Structured version   Visualization version   GIF version

Theorem xrge0npcan 32968
Description: Extended nonnegative real version of npcan 11437. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0npcan ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xrge0npcan
StepHypRef Expression
1 iccssxr 13398 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3947 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
4 simpr 484 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
5 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵𝐴)
64, 5eqbrtrrd 5134 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐴)
7 xgepnf 13132 . . . . . . . . 9 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
87biimpa 476 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ≤ 𝐴) → 𝐴 = +∞)
93, 6, 8syl2anc 584 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 = +∞)
10 xnegeq 13174 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
114, 10syl 17 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → -𝑒𝐵 = -𝑒+∞)
129, 11oveq12d 7408 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒+∞))
13 pnfxr 11235 . . . . . . 7 +∞ ∈ ℝ*
14 xnegid 13205 . . . . . . 7 (+∞ ∈ ℝ* → (+∞ +𝑒 -𝑒+∞) = 0)
1513, 14ax-mp 5 . . . . . 6 (+∞ +𝑒 -𝑒+∞) = 0
1612, 15eqtrdi 2781 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = 0)
1716oveq1d 7405 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
184oveq2d 7406 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 𝐵) = (0 +𝑒 +∞))
19 xaddlid 13209 . . . . 5 (+∞ ∈ ℝ* → (0 +𝑒 +∞) = +∞)
2013, 19mp1i 13 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 +∞) = +∞)
2117, 18, 203eqtrd 2769 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = +∞)
2221, 9eqtr4d 2768 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
23 simpl1 1192 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
241, 23sselid 3947 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
25 xrge0neqmnf 13420 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
2623, 25syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ≠ -∞)
27 simpl2 1193 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
281, 27sselid 3947 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2928xnegcld 13267 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ∈ ℝ*)
30 simpr 484 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
31 xnegneg 13181 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
32 xnegeq 13174 . . . . . . . . 9 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
3331, 32sylan9req 2786 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = -𝑒-∞)
34 xnegmnf 13177 . . . . . . . 8 -𝑒-∞ = +∞
3533, 34eqtrdi 2781 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = +∞)
3635stoic1a 1772 . . . . . 6 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → ¬ -𝑒𝐵 = -∞)
3736neqned 2933 . . . . 5 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
3828, 30, 37syl2anc 584 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
39 xrge0neqmnf 13420 . . . . 5 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
4027, 39syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
41 xaddass 13216 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
4224, 26, 29, 38, 28, 40, 41syl222anc 1388 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
43 xnegcl 13180 . . . . . . . 8 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
44 xaddcom 13207 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
4543, 44mpancom 688 . . . . . . 7 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
46 xnegid 13205 . . . . . . 7 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
4745, 46eqtrd 2765 . . . . . 6 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = 0)
4847oveq2d 7406 . . . . 5 (𝐵 ∈ ℝ* → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = (𝐴 +𝑒 0))
49 xaddrid 13208 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
5048, 49sylan9eqr 2787 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5124, 28, 50syl2anc 584 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5242, 51eqtrd 2765 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
5322, 52pm2.61dan 812 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214  cle 11216  -𝑒cxne 13076   +𝑒 cxad 13077  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-xneg 13079  df-xadd 13080  df-icc 13320
This theorem is referenced by:  esumle  34055  esumlef  34059  carsgclctunlem2  34317
  Copyright terms: Public domain W3C validator