Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0npcan Structured version   Visualization version   GIF version

Theorem xrge0npcan 32462
Description: Extended nonnegative real version of npcan 11473. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0npcan ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xrge0npcan
StepHypRef Expression
1 iccssxr 13411 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2 simpl1 1189 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3979 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
4 simpr 483 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
5 simpl3 1191 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵𝐴)
64, 5eqbrtrrd 5171 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐴)
7 xgepnf 13148 . . . . . . . . 9 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
87biimpa 475 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ≤ 𝐴) → 𝐴 = +∞)
93, 6, 8syl2anc 582 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 = +∞)
10 xnegeq 13190 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
114, 10syl 17 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → -𝑒𝐵 = -𝑒+∞)
129, 11oveq12d 7429 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒+∞))
13 pnfxr 11272 . . . . . . 7 +∞ ∈ ℝ*
14 xnegid 13221 . . . . . . 7 (+∞ ∈ ℝ* → (+∞ +𝑒 -𝑒+∞) = 0)
1513, 14ax-mp 5 . . . . . 6 (+∞ +𝑒 -𝑒+∞) = 0
1612, 15eqtrdi 2786 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = 0)
1716oveq1d 7426 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
184oveq2d 7427 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 𝐵) = (0 +𝑒 +∞))
19 xaddlid 13225 . . . . 5 (+∞ ∈ ℝ* → (0 +𝑒 +∞) = +∞)
2013, 19mp1i 13 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 +∞) = +∞)
2117, 18, 203eqtrd 2774 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = +∞)
2221, 9eqtr4d 2773 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
23 simpl1 1189 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
241, 23sselid 3979 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
25 xrge0neqmnf 13433 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
2623, 25syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ≠ -∞)
27 simpl2 1190 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
281, 27sselid 3979 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2928xnegcld 13283 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ∈ ℝ*)
30 simpr 483 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
31 xnegneg 13197 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
32 xnegeq 13190 . . . . . . . . 9 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
3331, 32sylan9req 2791 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = -𝑒-∞)
34 xnegmnf 13193 . . . . . . . 8 -𝑒-∞ = +∞
3533, 34eqtrdi 2786 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = +∞)
3635stoic1a 1772 . . . . . 6 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → ¬ -𝑒𝐵 = -∞)
3736neqned 2945 . . . . 5 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
3828, 30, 37syl2anc 582 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
39 xrge0neqmnf 13433 . . . . 5 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
4027, 39syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
41 xaddass 13232 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
4224, 26, 29, 38, 28, 40, 41syl222anc 1384 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
43 xnegcl 13196 . . . . . . . 8 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
44 xaddcom 13223 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
4543, 44mpancom 684 . . . . . . 7 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
46 xnegid 13221 . . . . . . 7 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
4745, 46eqtrd 2770 . . . . . 6 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = 0)
4847oveq2d 7427 . . . . 5 (𝐵 ∈ ℝ* → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = (𝐴 +𝑒 0))
49 xaddrid 13224 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
5048, 49sylan9eqr 2792 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5124, 28, 50syl2anc 582 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5242, 51eqtrd 2770 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
5322, 52pm2.61dan 809 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938   class class class wbr 5147  (class class class)co 7411  0cc0 11112  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251  cle 11253  -𝑒cxne 13093   +𝑒 cxad 13094  [,]cicc 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-xneg 13096  df-xadd 13097  df-icc 13335
This theorem is referenced by:  esumle  33354  esumlef  33358  carsgclctunlem2  33616
  Copyright terms: Public domain W3C validator