Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0npcan Structured version   Visualization version   GIF version

Theorem xrge0npcan 30439
Description: Extended nonnegative real version of npcan 10694. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0npcan ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xrge0npcan
StepHypRef Expression
1 iccssxr 12633 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2 simpl1 1172 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3849 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
4 simpr 477 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
5 simpl3 1174 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵𝐴)
64, 5eqbrtrrd 4949 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐴)
7 xgepnf 12373 . . . . . . . . 9 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
87biimpa 469 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ≤ 𝐴) → 𝐴 = +∞)
93, 6, 8syl2anc 576 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 = +∞)
10 xnegeq 12415 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
114, 10syl 17 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → -𝑒𝐵 = -𝑒+∞)
129, 11oveq12d 6992 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒+∞))
13 pnfxr 10492 . . . . . . 7 +∞ ∈ ℝ*
14 xnegid 12446 . . . . . . 7 (+∞ ∈ ℝ* → (+∞ +𝑒 -𝑒+∞) = 0)
1513, 14ax-mp 5 . . . . . 6 (+∞ +𝑒 -𝑒+∞) = 0
1612, 15syl6eq 2823 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = 0)
1716oveq1d 6989 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
184oveq2d 6990 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 𝐵) = (0 +𝑒 +∞))
19 xaddid2 12450 . . . . 5 (+∞ ∈ ℝ* → (0 +𝑒 +∞) = +∞)
2013, 19mp1i 13 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 +∞) = +∞)
2117, 18, 203eqtrd 2811 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = +∞)
2221, 9eqtr4d 2810 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
23 simpl1 1172 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
241, 23sseldi 3849 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
25 xrge0neqmnf 12654 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
2623, 25syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ≠ -∞)
27 simpl2 1173 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
281, 27sseldi 3849 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2928xnegcld 12507 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ∈ ℝ*)
30 simpr 477 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
31 xnegneg 12422 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
32 xnegeq 12415 . . . . . . . . 9 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
3331, 32sylan9req 2828 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = -𝑒-∞)
34 xnegmnf 12418 . . . . . . . 8 -𝑒-∞ = +∞
3533, 34syl6eq 2823 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = +∞)
3635stoic1a 1736 . . . . . 6 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → ¬ -𝑒𝐵 = -∞)
3736neqned 2967 . . . . 5 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
3828, 30, 37syl2anc 576 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
39 xrge0neqmnf 12654 . . . . 5 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
4027, 39syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
41 xaddass 12456 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
4224, 26, 29, 38, 28, 40, 41syl222anc 1367 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
43 xnegcl 12421 . . . . . . . 8 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
44 xaddcom 12448 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
4543, 44mpancom 676 . . . . . . 7 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
46 xnegid 12446 . . . . . . 7 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
4745, 46eqtrd 2807 . . . . . 6 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = 0)
4847oveq2d 6990 . . . . 5 (𝐵 ∈ ℝ* → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = (𝐴 +𝑒 0))
49 xaddid1 12449 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
5048, 49sylan9eqr 2829 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5124, 28, 50syl2anc 576 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5242, 51eqtrd 2807 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
5322, 52pm2.61dan 801 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2960   class class class wbr 4925  (class class class)co 6974  0cc0 10333  +∞cpnf 10469  -∞cmnf 10470  *cxr 10471  cle 10473  -𝑒cxne 12319   +𝑒 cxad 12320  [,]cicc 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-xneg 12322  df-xadd 12323  df-icc 12559
This theorem is referenced by:  esumle  30993  esumlef  30997  carsgclctunlem2  31254
  Copyright terms: Public domain W3C validator