Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0npcan Structured version   Visualization version   GIF version

Theorem xrge0npcan 30712
Description: Extended nonnegative real version of npcan 10884. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0npcan ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xrge0npcan
StepHypRef Expression
1 iccssxr 12808 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2 simpl1 1188 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3940 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
4 simpr 488 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
5 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐵𝐴)
64, 5eqbrtrrd 5066 . . . . . . . 8 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐴)
7 xgepnf 12546 . . . . . . . . 9 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
87biimpa 480 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ≤ 𝐴) → 𝐴 = +∞)
93, 6, 8syl2anc 587 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → 𝐴 = +∞)
10 xnegeq 12588 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
114, 10syl 17 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → -𝑒𝐵 = -𝑒+∞)
129, 11oveq12d 7158 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒+∞))
13 pnfxr 10684 . . . . . . 7 +∞ ∈ ℝ*
14 xnegid 12619 . . . . . . 7 (+∞ ∈ ℝ* → (+∞ +𝑒 -𝑒+∞) = 0)
1513, 14ax-mp 5 . . . . . 6 (+∞ +𝑒 -𝑒+∞) = 0
1612, 15syl6eq 2873 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = 0)
1716oveq1d 7155 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
184oveq2d 7156 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 𝐵) = (0 +𝑒 +∞))
19 xaddid2 12623 . . . . 5 (+∞ ∈ ℝ* → (0 +𝑒 +∞) = +∞)
2013, 19mp1i 13 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → (0 +𝑒 +∞) = +∞)
2117, 18, 203eqtrd 2861 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = +∞)
2221, 9eqtr4d 2860 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
23 simpl1 1188 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ (0[,]+∞))
241, 23sseldi 3940 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
25 xrge0neqmnf 12830 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
2623, 25syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐴 ≠ -∞)
27 simpl2 1189 . . . . . 6 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
281, 27sseldi 3940 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2928xnegcld 12681 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ∈ ℝ*)
30 simpr 488 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
31 xnegneg 12595 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
32 xnegeq 12588 . . . . . . . . 9 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
3331, 32sylan9req 2878 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = -𝑒-∞)
34 xnegmnf 12591 . . . . . . . 8 -𝑒-∞ = +∞
3533, 34syl6eq 2873 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ -𝑒𝐵 = -∞) → 𝐵 = +∞)
3635stoic1a 1774 . . . . . 6 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → ¬ -𝑒𝐵 = -∞)
3736neqned 3018 . . . . 5 ((𝐵 ∈ ℝ* ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
3828, 30, 37syl2anc 587 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → -𝑒𝐵 ≠ -∞)
39 xrge0neqmnf 12830 . . . . 5 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
4027, 39syl 17 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
41 xaddass 12630 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
4224, 26, 29, 38, 28, 40, 41syl222anc 1383 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)))
43 xnegcl 12594 . . . . . . . 8 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
44 xaddcom 12621 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
4543, 44mpancom 687 . . . . . . 7 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
46 xnegid 12619 . . . . . . 7 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
4745, 46eqtrd 2857 . . . . . 6 (𝐵 ∈ ℝ* → (-𝑒𝐵 +𝑒 𝐵) = 0)
4847oveq2d 7156 . . . . 5 (𝐵 ∈ ℝ* → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = (𝐴 +𝑒 0))
49 xaddid1 12622 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
5048, 49sylan9eqr 2879 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5124, 28, 50syl2anc 587 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → (𝐴 +𝑒 (-𝑒𝐵 +𝑒 𝐵)) = 𝐴)
5242, 51eqtrd 2857 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) ∧ ¬ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
5322, 52pm2.61dan 812 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  (class class class)co 7140  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  cle 10665  -𝑒cxne 12492   +𝑒 cxad 12493  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-xneg 12495  df-xadd 12496  df-icc 12733
This theorem is referenced by:  esumle  31391  esumlef  31395  carsgclctunlem2  31651
  Copyright terms: Public domain W3C validator