Step | Hyp | Ref
| Expression |
1 | | iblss.1 |
. . . 4
⢠(š ā š“ ā šµ) |
2 | 1 | resmptd 6040 |
. . 3
⢠(š ā ((š„ ā šµ ⦠š¶) ā¾ š“) = (š„ ā š“ ⦠š¶)) |
3 | | iblss.4 |
. . . . 5
⢠(š ā (š„ ā šµ ⦠š¶) ā
šæ1) |
4 | | iblmbf 25617 |
. . . . 5
⢠((š„ ā šµ ⦠š¶) ā šæ1 ā (š„ ā šµ ⦠š¶) ā MblFn) |
5 | 3, 4 | syl 17 |
. . . 4
⢠(š ā (š„ ā šµ ⦠š¶) ā MblFn) |
6 | | iblss.2 |
. . . 4
⢠(š ā š“ ā dom vol) |
7 | | mbfres 25493 |
. . . 4
⢠(((š„ ā šµ ⦠š¶) ā MblFn ā§ š“ ā dom vol) ā ((š„ ā šµ ⦠š¶) ā¾ š“) ā MblFn) |
8 | 5, 6, 7 | syl2anc 583 |
. . 3
⢠(š ā ((š„ ā šµ ⦠š¶) ā¾ š“) ā MblFn) |
9 | 2, 8 | eqeltrrd 2833 |
. 2
⢠(š ā (š„ ā š“ ⦠š¶) ā MblFn) |
10 | | ifan 4581 |
. . . . . 6
⢠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) = if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) |
11 | 1 | sselda 3982 |
. . . . . . . . 9
⢠((š ā§ š„ ā š“) ā š„ ā šµ) |
12 | 11 | ad4ant14 749 |
. . . . . . . 8
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā š“) ā š„ ā šµ) |
13 | | iblss.3 |
. . . . . . . . . . . . . . 15
⢠((š ā§ š„ ā šµ) ā š¶ ā š) |
14 | 5, 13 | mbfmptcl 25485 |
. . . . . . . . . . . . . 14
⢠((š ā§ š„ ā šµ) ā š¶ ā ā) |
15 | 14 | ad4ant14 749 |
. . . . . . . . . . . . 13
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā š¶ ā ā) |
16 | | ax-icn 11175 |
. . . . . . . . . . . . . 14
⢠i ā
ā |
17 | | ine0 11656 |
. . . . . . . . . . . . . 14
⢠i ā
0 |
18 | | elfzelz 13508 |
. . . . . . . . . . . . . . 15
⢠(š ā (0...3) ā š ā
ā¤) |
19 | 18 | ad3antlr 728 |
. . . . . . . . . . . . . 14
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā š ā ā¤) |
20 | | expclz 14057 |
. . . . . . . . . . . . . 14
⢠((i
ā ā ā§ i ā 0 ā§ š ā ā¤) ā (iāš) ā
ā) |
21 | 16, 17, 19, 20 | mp3an12i 1464 |
. . . . . . . . . . . . 13
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā (iāš) ā ā) |
22 | | expne0i 14067 |
. . . . . . . . . . . . . 14
⢠((i
ā ā ā§ i ā 0 ā§ š ā ā¤) ā (iāš) ā 0) |
23 | 16, 17, 19, 22 | mp3an12i 1464 |
. . . . . . . . . . . . 13
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā (iāš) ā 0) |
24 | 15, 21, 23 | divcld 11997 |
. . . . . . . . . . . 12
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā (š¶ / (iāš)) ā ā) |
25 | 24 | recld 15148 |
. . . . . . . . . . 11
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā (āā(š¶ / (iāš))) ā ā) |
26 | | 0re 11223 |
. . . . . . . . . . 11
⢠0 ā
ā |
27 | | ifcl 4573 |
. . . . . . . . . . 11
ā¢
(((āā(š¶ /
(iāš))) ā ā
ā§ 0 ā ā) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā ā) |
28 | 25, 26, 27 | sylancl 585 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā ā) |
29 | 28 | rexrd 11271 |
. . . . . . . . 9
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā
ā*) |
30 | | max1 13171 |
. . . . . . . . . 10
⢠((0
ā ā ā§ (āā(š¶ / (iāš))) ā ā) ā 0 ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0)) |
31 | 26, 25, 30 | sylancr 586 |
. . . . . . . . 9
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā 0 ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0)) |
32 | | elxrge0 13441 |
. . . . . . . . 9
⢠(if(0
⤠(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ā
(0[,]+ā) ā (if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā ā* ā§ 0
⤠if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0))) |
33 | 29, 31, 32 | sylanbrc 582 |
. . . . . . . 8
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā
(0[,]+ā)) |
34 | 12, 33 | syldan 590 |
. . . . . . 7
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā š“) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ā
(0[,]+ā)) |
35 | | 0e0iccpnf 13443 |
. . . . . . . 8
⢠0 ā
(0[,]+ā) |
36 | 35 | a1i 11 |
. . . . . . 7
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā š“) ā 0 ā
(0[,]+ā)) |
37 | 34, 36 | ifclda 4563 |
. . . . . 6
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ā
(0[,]+ā)) |
38 | 10, 37 | eqeltrid 2836 |
. . . . 5
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) ā
(0[,]+ā)) |
39 | 38 | fmpttd 7116 |
. . . 4
⢠((š ā§ š ā (0...3)) ā (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))),
0)):āā¶(0[,]+ā)) |
40 | | eqidd 2732 |
. . . . . 6
⢠(š ā (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) = (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) |
41 | | eqidd 2732 |
. . . . . 6
⢠((š ā§ š„ ā šµ) ā (āā(š¶ / (iāš))) = (āā(š¶ / (iāš)))) |
42 | 40, 41, 3, 13 | iblitg 25618 |
. . . . 5
⢠((š ā§ š ā ā¤) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā) |
43 | 18, 42 | sylan2 592 |
. . . 4
⢠((š ā§ š ā (0...3)) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā) |
44 | | ifan 4581 |
. . . . . . 7
⢠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) = if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) |
45 | 35 | a1i 11 |
. . . . . . . 8
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā 0 ā
(0[,]+ā)) |
46 | 33, 45 | ifclda 4563 |
. . . . . . 7
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ā
(0[,]+ā)) |
47 | 44, 46 | eqeltrid 2836 |
. . . . . 6
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) ā
(0[,]+ā)) |
48 | 47 | fmpttd 7116 |
. . . . 5
⢠((š ā§ š ā (0...3)) ā (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))),
0)):āā¶(0[,]+ā)) |
49 | 28 | leidd 11787 |
. . . . . . . . . . 11
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0) ⤠if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0)) |
50 | | breq1 5151 |
. . . . . . . . . . . 12
⢠(if(0
⤠(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) = if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ā (if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ⤠if(0
⤠(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ā
if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0))) |
51 | | breq1 5151 |
. . . . . . . . . . . 12
⢠(0 =
if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ā (0 ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ā
if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0))) |
52 | 50, 51 | ifboth 4567 |
. . . . . . . . . . 11
⢠((if(0
⤠(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ⤠if(0
⤠(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))), 0) ā§ 0
⤠if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0)) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0)) |
53 | 49, 31, 52 | syl2anc 583 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(0 ā¤
(āā(š¶ /
(iāš))),
(āā(š¶ /
(iāš))),
0)) |
54 | | iftrue 4534 |
. . . . . . . . . . 11
⢠(š„ ā šµ ā if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) = if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0)) |
55 | 54 | adantl 481 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) = if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0)) |
56 | 53, 55 | breqtrrd 5176 |
. . . . . . . . 9
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ā§ š„ ā šµ) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0)) |
57 | | 0le0 12320 |
. . . . . . . . . . 11
⢠0 ā¤
0 |
58 | 57 | a1i 11 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā 0 ⤠0) |
59 | 12 | stoic1a 1773 |
. . . . . . . . . . 11
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā ¬ š„ ā š“) |
60 | 59 | iffalsed 4539 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) = 0) |
61 | | iffalse 4537 |
. . . . . . . . . . 11
⢠(¬
š„ ā šµ ā if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) = 0) |
62 | 61 | adantl 481 |
. . . . . . . . . 10
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) = 0) |
63 | 58, 60, 62 | 3brtr4d 5180 |
. . . . . . . . 9
⢠((((š ā§ š ā (0...3)) ā§ š„ ā ā) ⧠¬ š„ ā šµ) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0)) |
64 | 56, 63 | pm2.61dan 810 |
. . . . . . . 8
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if(š„ ā š“, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0) ⤠if(š„ ā šµ, if(0 ⤠(āā(š¶ / (iāš))), (āā(š¶ / (iāš))), 0), 0)) |
65 | 64, 10, 44 | 3brtr4g 5182 |
. . . . . . 7
⢠(((š ā§ š ā (0...3)) ā§ š„ ā ā) ā if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) ⤠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) |
66 | 65 | ralrimiva 3145 |
. . . . . 6
⢠((š ā§ š ā (0...3)) ā āš„ ā ā if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0) ⤠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) |
67 | | reex 11207 |
. . . . . . . 8
⢠ā
ā V |
68 | 67 | a1i 11 |
. . . . . . 7
⢠((š ā§ š ā (0...3)) ā ā ā
V) |
69 | | eqidd 2732 |
. . . . . . 7
⢠((š ā§ š ā (0...3)) ā (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) = (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) |
70 | | eqidd 2732 |
. . . . . . 7
⢠((š ā§ š ā (0...3)) ā (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) = (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) |
71 | 68, 38, 47, 69, 70 | ofrfval2 7695 |
. . . . . 6
⢠((š ā§ š ā (0...3)) ā ((š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) ār ⤠(š„ ā ā ā¦
if((š„ ā šµ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))), 0)) ā
āš„ ā ā
if((š„ ā š“ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))), 0) ā¤
if((š„ ā šµ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))),
0))) |
72 | 66, 71 | mpbird 257 |
. . . . 5
⢠((š ā§ š ā (0...3)) ā (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) ār ⤠(š„ ā ā ā¦
if((š„ ā šµ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))),
0))) |
73 | | itg2le 25589 |
. . . . 5
⢠(((š„ ā ā ā¦
if((š„ ā š“ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))),
0)):āā¶(0[,]+ā) ā§ (š„ ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)):āā¶(0[,]+ā) ā§
(š„ ā ā ā¦
if((š„ ā š“ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))), 0))
ār ⤠(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā¤
(ā«2ā(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)))) |
74 | 39, 48, 72, 73 | syl3anc 1370 |
. . . 4
⢠((š ā§ š ā (0...3)) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā¤
(ā«2ā(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)))) |
75 | | itg2lecl 25588 |
. . . 4
⢠(((š„ ā ā ā¦
if((š„ ā š“ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))),
0)):āā¶(0[,]+ā) ā§ (ā«2ā(š„ ā ā ā¦
if((š„ ā šµ ā§ 0 ā¤
(āā(š¶ /
(iāš)))),
(āā(š¶ /
(iāš))), 0))) ā
ā ā§ (ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā¤
(ā«2ā(š„
ā ā ⦠if((š„ ā šµ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)))) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā) |
76 | 39, 43, 74, 75 | syl3anc 1370 |
. . 3
⢠((š ā§ š ā (0...3)) ā
(ā«2ā(š„
ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā) |
77 | 76 | ralrimiva 3145 |
. 2
⢠(š ā āš ā
(0...3)(ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā) |
78 | | eqidd 2732 |
. . 3
⢠(š ā (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0)) = (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) |
79 | | eqidd 2732 |
. . 3
⢠((š ā§ š„ ā š“) ā (āā(š¶ / (iāš))) = (āā(š¶ / (iāš)))) |
80 | 11, 14 | syldan 590 |
. . 3
⢠((š ā§ š„ ā š“) ā š¶ ā ā) |
81 | 78, 79, 80 | isibl2 25616 |
. 2
⢠(š ā ((š„ ā š“ ⦠š¶) ā šæ1 ā
((š„ ā š“ ⦠š¶) ā MblFn ā§ āš ā
(0...3)(ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(š¶ / (iāš)))), (āā(š¶ / (iāš))), 0))) ā ā))) |
82 | 9, 77, 81 | mpbir2and 710 |
1
⢠(š ā (š„ ā š“ ⦠š¶) ā
šæ1) |