| Step | Hyp | Ref
| Expression |
| 1 | | iblss.1 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | 1 | resmptd 6032 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 3 | | iblss.4 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
| 4 | | iblmbf 25725 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 6 | | iblss.2 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 7 | | mbfres 25602 |
. . . 4
⊢ (((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
| 9 | 2, 8 | eqeltrrd 2836 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 10 | | ifan 4559 |
. . . . . 6
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 11 | 1 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 12 | 11 | ad4ant14 752 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 13 | | iblss.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| 14 | 5, 13 | mbfmptcl 25594 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 15 | 14 | ad4ant14 752 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 16 | | ax-icn 11193 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
| 17 | | ine0 11677 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
| 18 | | elfzelz 13546 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 19 | 18 | ad3antlr 731 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ ℤ) |
| 20 | | expclz 14107 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
| 21 | 16, 17, 19, 20 | mp3an12i 1467 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (i↑𝑘) ∈ ℂ) |
| 22 | | expne0i 14117 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
| 23 | 16, 17, 19, 22 | mp3an12i 1467 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (i↑𝑘) ≠ 0) |
| 24 | 15, 21, 23 | divcld 12022 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
| 25 | 24 | recld 15218 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
| 26 | | 0re 11242 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 27 | | ifcl 4551 |
. . . . . . . . . . 11
⊢
(((ℜ‘(𝐶 /
(i↑𝑘))) ∈ ℝ
∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
| 28 | 25, 26, 27 | sylancl 586 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
| 29 | 28 | rexrd 11290 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
ℝ*) |
| 30 | | max1 13206 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 31 | 26, 25, 30 | sylancr 587 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 32 | | elxrge0 13479 |
. . . . . . . . 9
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∈
(0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 33 | 29, 31, 32 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 34 | 12, 33 | syldan 591 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 35 | | 0e0iccpnf 13481 |
. . . . . . . 8
⊢ 0 ∈
(0[,]+∞) |
| 36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 37 | 34, 36 | ifclda 4541 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 38 | 10, 37 | eqeltrid 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 39 | 38 | fmpttd 7110 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
| 40 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 41 | | eqidd 2737 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 42 | 40, 41, 3, 13 | iblitg 25726 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 43 | 18, 42 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 44 | | ifan 4559 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 45 | 35 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → 0 ∈
(0[,]+∞)) |
| 46 | 33, 45 | ifclda 4541 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 47 | 44, 46 | eqeltrid 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 48 | 47 | fmpttd 7110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
| 49 | 28 | leidd 11808 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 50 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤ if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ↔
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
| 51 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (0 =
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ↔
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
| 52 | 50, 51 | ifboth 4545 |
. . . . . . . . . . 11
⊢ ((if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤ if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 53 | 49, 31, 52 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 54 | | iftrue 4511 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 55 | 54 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 56 | 53, 55 | breqtrrd 5152 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 57 | | 0le0 12346 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
| 58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → 0 ≤ 0) |
| 59 | 12 | stoic1a 1772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
| 60 | 59 | iffalsed 4516 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
| 61 | | iffalse 4514 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
| 62 | 61 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
| 63 | 58, 60, 62 | 3brtr4d 5156 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 64 | 56, 63 | pm2.61dan 812 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 65 | 64, 10, 44 | 3brtr4g 5158 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 66 | 65 | ralrimiva 3133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 67 | | reex 11225 |
. . . . . . . 8
⊢ ℝ
∈ V |
| 68 | 67 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) |
| 69 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 70 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 71 | 68, 38, 47, 69, 70 | ofrfval2 7697 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) ↔
∀𝑥 ∈ ℝ
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
| 72 | 66, 71 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
| 73 | | itg2le 25697 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))
∘r ≤ (𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
| 74 | 39, 48, 72, 73 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
| 75 | | itg2lecl 25696 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) ∈
ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 76 | 39, 43, 74, 75 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 77 | 76 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 78 | | eqidd 2737 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 79 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 80 | 11, 14 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 81 | 78, 79, 80 | isibl2 25724 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 82 | 9, 77, 81 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |