Step | Hyp | Ref
| Expression |
1 | | iblss.1 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | 1 | resmptd 5937 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | | iblss.4 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
4 | | iblmbf 24837 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
6 | | iblss.2 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ dom vol) |
7 | | mbfres 24713 |
. . . 4
⊢ (((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
8 | 5, 6, 7 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
9 | 2, 8 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
10 | | ifan 4509 |
. . . . . 6
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
11 | 1 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
12 | 11 | ad4ant14 748 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
13 | | iblss.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
14 | 5, 13 | mbfmptcl 24705 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
15 | 14 | ad4ant14 748 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
16 | | ax-icn 10861 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
17 | | ine0 11340 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
18 | | elfzelz 13185 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
19 | 18 | ad3antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ ℤ) |
20 | | expclz 13735 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
21 | 16, 17, 19, 20 | mp3an12i 1463 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (i↑𝑘) ∈ ℂ) |
22 | | expne0i 13743 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
23 | 16, 17, 19, 22 | mp3an12i 1463 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (i↑𝑘) ≠ 0) |
24 | 15, 21, 23 | divcld 11681 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
25 | 24 | recld 14833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
26 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
27 | | ifcl 4501 |
. . . . . . . . . . 11
⊢
(((ℜ‘(𝐶 /
(i↑𝑘))) ∈ ℝ
∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
28 | 25, 26, 27 | sylancl 585 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
29 | 28 | rexrd 10956 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
ℝ*) |
30 | | max1 12848 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
31 | 26, 25, 30 | sylancr 586 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
32 | | elxrge0 13118 |
. . . . . . . . 9
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∈
(0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
33 | 29, 31, 32 | sylanbrc 582 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
34 | 12, 33 | syldan 590 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
35 | | 0e0iccpnf 13120 |
. . . . . . . 8
⊢ 0 ∈
(0[,]+∞) |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
37 | 34, 36 | ifclda 4491 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
38 | 10, 37 | eqeltrid 2843 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
39 | 38 | fmpttd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
40 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
41 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
42 | 40, 41, 3, 13 | iblitg 24838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
43 | 18, 42 | sylan2 592 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
44 | | ifan 4509 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
45 | 35 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → 0 ∈
(0[,]+∞)) |
46 | 33, 45 | ifclda 4491 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
47 | 44, 46 | eqeltrid 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
48 | 47 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
49 | 28 | leidd 11471 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
50 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤ if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ↔
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
51 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (0 =
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ↔
if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
52 | 50, 51 | ifboth 4495 |
. . . . . . . . . . 11
⊢ ((if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤ if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
53 | 49, 31, 52 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
54 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
55 | 54 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
56 | 53, 55 | breqtrrd 5098 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
57 | | 0le0 12004 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → 0 ≤ 0) |
59 | 12 | stoic1a 1776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
60 | 59 | iffalsed 4467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
61 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
62 | 61 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
63 | 58, 60, 62 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
64 | 56, 63 | pm2.61dan 809 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
65 | 64, 10, 44 | 3brtr4g 5104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
66 | 65 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
67 | | reex 10893 |
. . . . . . . 8
⊢ ℝ
∈ V |
68 | 67 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) |
69 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
70 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
71 | 68, 38, 47, 69, 70 | ofrfval2 7532 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) ↔
∀𝑥 ∈ ℝ
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ≤
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
72 | 66, 71 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
73 | | itg2le 24809 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))
∘r ≤ (𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
74 | 39, 48, 72, 73 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
75 | | itg2lecl 24808 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) ∈
ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
76 | 39, 43, 74, 75 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
77 | 76 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
78 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
79 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
80 | 11, 14 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
81 | 78, 79, 80 | isibl2 24836 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
82 | 9, 77, 81 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |