MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss Structured version   Visualization version   GIF version

Theorem iblss 25733
Description: A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
iblss.1 (𝜑𝐴𝐵)
iblss.2 (𝜑𝐴 ∈ dom vol)
iblss.3 ((𝜑𝑥𝐵) → 𝐶𝑉)
iblss.4 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblss (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblss.1 . . . 4 (𝜑𝐴𝐵)
21resmptd 5988 . . 3 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 iblss.4 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
4 iblmbf 25695 . . . . 5 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
53, 4syl 17 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
6 iblss.2 . . . 4 (𝜑𝐴 ∈ dom vol)
7 mbfres 25572 . . . 4 (((𝑥𝐵𝐶) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ MblFn)
85, 6, 7syl2anc 584 . . 3 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ MblFn)
92, 8eqeltrrd 2832 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
10 ifan 4526 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
111sselda 3929 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐵)
1211ad4ant14 752 . . . . . . . 8 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐵)
13 iblss.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → 𝐶𝑉)
145, 13mbfmptcl 25564 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
1514ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
16 ax-icn 11065 . . . . . . . . . . . . . 14 i ∈ ℂ
17 ine0 11552 . . . . . . . . . . . . . 14 i ≠ 0
18 elfzelz 13424 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1918ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℤ)
20 expclz 13991 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
2116, 17, 19, 20mp3an12i 1467 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → (i↑𝑘) ∈ ℂ)
22 expne0i 14001 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2316, 17, 19, 22mp3an12i 1467 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → (i↑𝑘) ≠ 0)
2415, 21, 23divcld 11897 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ)
2524recld 15101 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
26 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
27 ifcl 4518 . . . . . . . . . . 11 (((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2825, 26, 27sylancl 586 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2928rexrd 11162 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ*)
30 max1 13084 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3126, 25, 30sylancr 587 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
32 elxrge0 13357 . . . . . . . . 9 (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3329, 31, 32sylanbrc 583 . . . . . . . 8 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3412, 33syldan 591 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
35 0e0iccpnf 13359 . . . . . . . 8 0 ∈ (0[,]+∞)
3635a1i 11 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3734, 36ifclda 4508 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3810, 37eqeltrid 2835 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3938fmpttd 7048 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
40 eqidd 2732 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
41 eqidd 2732 . . . . . 6 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
4240, 41, 3, 13iblitg 25696 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
4318, 42sylan2 593 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
44 ifan 4526 . . . . . . 7 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4535a1i 11 . . . . . . . 8 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
4633, 45ifclda 4508 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
4744, 46eqeltrid 2835 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4847fmpttd 7048 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
4928leidd 11683 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
50 breq1 5092 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ↔ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
51 breq1 5092 . . . . . . . . . . . 12 (0 = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) → (0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ↔ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
5250, 51ifboth 4512 . . . . . . . . . . 11 ((if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
5349, 31, 52syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
54 iftrue 4478 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
5554adantl 481 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
5653, 55breqtrrd 5117 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
57 0le0 12226 . . . . . . . . . . 11 0 ≤ 0
5857a1i 11 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ≤ 0)
5912stoic1a 1773 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
6059iffalsed 4483 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
61 iffalse 4481 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
6261adantl 481 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
6358, 60, 623brtr4d 5121 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
6456, 63pm2.61dan 812 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
6564, 10, 443brtr4g 5123 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
6665ralrimiva 3124 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
67 reex 11097 . . . . . . . 8 ℝ ∈ V
6867a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
69 eqidd 2732 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
70 eqidd 2732 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7168, 38, 47, 69, 70ofrfval2 7631 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ≤ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7266, 71mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
73 itg2le 25667 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
7439, 48, 72, 73syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 itg2lecl 25666 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
7639, 43, 74, 75syl3anc 1373 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
7776ralrimiva 3124 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
78 eqidd 2732 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
79 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8011, 14syldan 591 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8178, 79, 80isibl2 25694 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
829, 77, 81mpbir2and 713 1 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  ifcif 4472   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  r cofr 7609  cc 11004  cr 11005  0cc0 11006  ici 11008  +∞cpnf 11143  *cxr 11145  cle 11147   / cdiv 11774  3c3 12181  cz 12468  [,]cicc 13248  ...cfz 13407  cexp 13968  cre 15004  volcvol 25391  MblFncmbf 25542  2citg2 25544  𝐿1cibl 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21284  df-met 21285  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550
This theorem is referenced by:  itgss3  25743  itgless  25745  bddmulibl  25767  itgcn  25773  ditgcl  25786  ditgswap  25787  ditgsplitlem  25788  ftc1lem1  25969  ftc1lem2  25970  ftc1a  25971  ftc1lem4  25973  ftc2  25978  ftc2ditglem  25979  itgsubstlem  25982  itgpowd  25984  fdvposlt  34612  fdvposle  34614  circlemeth  34653  ftc1cnnclem  37741  ftc1anc  37751  ftc2nc  37752  areacirc  37763  lcmineqlem10  42141  lcmineqlem12  42143  lhe4.4ex1a  44432  itgsin0pilem1  46058  iblioosinexp  46061  itgsinexplem1  46062  itgsinexp  46063  itgcoscmulx  46077  itgsincmulx  46082  iblcncfioo  46086  dirkeritg  46210  fourierdlem87  46301  fourierdlem95  46309  fourierdlem103  46317  fourierdlem104  46318  fourierdlem107  46321  fourierdlem111  46325  fourierdlem112  46326  sqwvfoura  46336  sqwvfourb  46337  etransclem18  46360
  Copyright terms: Public domain W3C validator