Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volico2 Structured version   Visualization version   GIF version

Theorem volico2 44133
Description: The measure of left-closed right-open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))

Proof of Theorem volico2
StepHypRef Expression
1 iftrue 4470 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 volico 43478 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
43adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
5 simpll 763 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 simplr 765 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
85, 6, 7ltled 11106 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98iftrued 4472 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
102, 4, 93eqtr4d 2789 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
1110adantlr 711 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
12 simpll 763 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312simpld 494 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1412simprd 495 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
15 simplr 765 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1713, 14, 15, 16lenlteq 42857 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 simplr 765 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
19 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
2019eqcomd 2745 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴)
2118, 20eqled 11061 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵𝐴)
22 simpll 763 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
2318, 22lenltd 11104 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2421, 23mpbid 231 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
2524iffalsed 4475 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
26 recn 10945 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2726subidd 11303 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴𝐴) = 0)
2827eqcomd 2745 . . . . . . 7 (𝐴 ∈ ℝ → 0 = (𝐴𝐴))
2928ad2antrr 722 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 0 = (𝐴𝐴))
30 oveq1 7275 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐴))
3130adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐴𝐴) = (𝐵𝐴))
3225, 29, 313eqtrd 2783 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
333adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3422, 19eqled 11061 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴𝐵)
3534iftrued 4472 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3632, 33, 353eqtr4d 2789 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
3712, 17, 36syl2anc 583 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
3811, 37pm2.61dan 809 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
398stoic1a 1778 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → ¬ 𝐴 < 𝐵)
4039iffalsed 4475 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
42 iffalse 4473 . . . 4 𝐴𝐵 → if(𝐴𝐵, (𝐵𝐴), 0) = 0)
4342adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = 0)
4440, 41, 433eqtr4d 2789 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
4538, 44pm2.61dan 809 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  ifcif 4464   class class class wbr 5078  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855   < clt 10993  cle 10994  cmin 11188  [,)cico 13063  volcvol 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179  df-sum 15379  df-rest 17114  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-bases 22077  df-cmp 22519  df-ovol 24609  df-vol 24610
This theorem is referenced by:  vonicc  44177
  Copyright terms: Public domain W3C validator