Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volico2 Structured version   Visualization version   GIF version

Theorem volico2 46626
Description: The measure of left-closed right-open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))

Proof of Theorem volico2
StepHypRef Expression
1 iftrue 4482 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 volico 45968 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
43adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
5 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
85, 6, 7ltled 11264 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98iftrued 4484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
102, 4, 93eqtr4d 2774 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
1110adantlr 715 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
12 simpll 766 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312simpld 494 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1412simprd 495 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
15 simplr 768 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1713, 14, 15, 16lenlteq 45347 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
19 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
2019eqcomd 2735 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴)
2118, 20eqled 11219 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵𝐴)
22 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
2318, 22lenltd 11262 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2421, 23mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
2524iffalsed 4487 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
26 recn 11099 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2726subidd 11463 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴𝐴) = 0)
2827eqcomd 2735 . . . . . . 7 (𝐴 ∈ ℝ → 0 = (𝐴𝐴))
2928ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 0 = (𝐴𝐴))
30 oveq1 7356 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐴))
3130adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐴𝐴) = (𝐵𝐴))
3225, 29, 313eqtrd 2768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
333adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3422, 19eqled 11219 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴𝐵)
3534iftrued 4484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3632, 33, 353eqtr4d 2774 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
3712, 17, 36syl2anc 584 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
3811, 37pm2.61dan 812 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
398stoic1a 1772 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → ¬ 𝐴 < 𝐵)
4039iffalsed 4487 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
42 iffalse 4485 . . . 4 𝐴𝐵 → if(𝐴𝐵, (𝐵𝐴), 0) = 0)
4342adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, (𝐵𝐴), 0) = 0)
4440, 41, 433eqtr4d 2774 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
4538, 44pm2.61dan 812 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009   < clt 11149  cle 11150  cmin 11347  [,)cico 13250  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364
This theorem is referenced by:  vonicc  46670
  Copyright terms: Public domain W3C validator