Proof of Theorem volico2
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4531 |
. . . . . 6
⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 3 | | volico 45998 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 5 | | simpll 767 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 6 | | simplr 769 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 7 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) |
| 8 | 5, 6, 7 | ltled 11409 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
| 9 | 8 | iftrued 4533 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 10 | 2, 4, 9 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 11 | 10 | adantlr 715 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 12 | | simpll 767 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 13 | 12 | simpld 494 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 14 | 12 | simprd 495 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 15 | | simplr 769 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
| 16 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) |
| 17 | 13, 14, 15, 16 | lenlteq 45375 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵) |
| 18 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℝ) |
| 19 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
| 20 | 19 | eqcomd 2743 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴) |
| 21 | 18, 20 | eqled 11364 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐵 ≤ 𝐴) |
| 22 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℝ) |
| 23 | 18, 22 | lenltd 11407 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 24 | 21, 23 | mpbid 232 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵) |
| 25 | 24 | iffalsed 4536 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 26 | | recn 11245 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 27 | 26 | subidd 11608 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 − 𝐴) = 0) |
| 28 | 27 | eqcomd 2743 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 0 =
(𝐴 − 𝐴)) |
| 29 | 28 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 0 = (𝐴 − 𝐴)) |
| 30 | | oveq1 7438 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴 − 𝐴) = (𝐵 − 𝐴)) |
| 31 | 30 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (𝐴 − 𝐴) = (𝐵 − 𝐴)) |
| 32 | 25, 29, 31 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 33 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 34 | 22, 19 | eqled 11364 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| 35 | 34 | iftrued 4533 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 36 | 32, 33, 35 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 37 | 12, 17, 36 | syl2anc 584 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 38 | 11, 37 | pm2.61dan 813 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 39 | 8 | stoic1a 1772 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 ≤ 𝐵) → ¬ 𝐴 < 𝐵) |
| 40 | 39 | iffalsed 4536 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 ≤ 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 41 | 3 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 42 | | iffalse 4534 |
. . . 4
⊢ (¬
𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 43 | 42 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 44 | 40, 41, 43 | 3eqtr4d 2787 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |
| 45 | 38, 44 | pm2.61dan 813 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) |