MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon0 Structured version   Visualization version   GIF version

Theorem clwwlknon0 27857
Description: Sufficient conditions for ClWWalksNOn to be empty. (Contributed by AV, 25-Mar-2022.)
Assertion
Ref Expression
clwwlknon0 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)

Proof of Theorem clwwlknon0
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7138 . . . 4 (𝑁 = 0 → (𝑋(ClWWalksNOn‘𝐺)𝑁) = (𝑋(ClWWalksNOn‘𝐺)0))
2 clwwlk0on0 27856 . . . 4 (𝑋(ClWWalksNOn‘𝐺)0) = ∅
31, 2syl6eq 2872 . . 3 (𝑁 = 0 → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
43a1d 25 . 2 (𝑁 = 0 → (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅))
5 simprl 770 . . . . . 6 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → 𝑋 ∈ (Vtx‘𝐺))
6 elnnne0 11889 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
76simplbi2 504 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≠ 0 → 𝑁 ∈ ℕ))
87adantl 485 . . . . . . 7 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑁 ≠ 0 → 𝑁 ∈ ℕ))
98impcom 411 . . . . . 6 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ)
105, 9jca 515 . . . . 5 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ))
1110stoic1a 1774 . . . 4 ((𝑁 ≠ 0 ∧ ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ)) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))
12 clwwlknonmpo 27853 . . . . 5 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
1312mpondm0 7361 . . . 4 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
1411, 13syl 17 . . 3 ((𝑁 ≠ 0 ∧ ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
1514ex 416 . 2 (𝑁 ≠ 0 → (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅))
164, 15pm2.61ine 3090 1 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3007  {crab 3130  c0 4266  cfv 6328  (class class class)co 7130  0cc0 10514  cn 11615  0cn0 11875  Vtxcvtx 26768   ClWWalksN cclwwlkn 27788  ClWWalksNOncclwwlknon 27851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-clwwlk 27746  df-clwwlkn 27789  df-clwwlknon 27852
This theorem is referenced by:  clwwlknon1nloop  27863  clwwlknon1le1  27865
  Copyright terms: Public domain W3C validator