| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nssdmovg | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.) |
| Ref | Expression |
|---|---|
| nssdmovg | ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | ssel2 3941 | . . . . 5 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
| 3 | opelxp 5674 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) |
| 5 | 4 | stoic1a 1772 | . . 3 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 6 | ndmfv 6893 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 8 | 1, 7 | eqtrid 2776 | 1 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 〈cop 4595 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: mpondm0 7629 |
| Copyright terms: Public domain | W3C validator |