![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssdmovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.) |
Ref | Expression |
---|---|
nssdmovg | ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6977 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | ssel2 3847 | . . . . 5 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
3 | opelxp 5439 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
4 | 2, 3 | sylib 210 | . . . 4 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) |
5 | 4 | stoic1a 1735 | . . 3 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | ndmfv 6526 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
8 | 1, 7 | syl5eq 2820 | 1 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 ∅c0 4172 〈cop 4441 × cxp 5401 dom cdm 5403 ‘cfv 6185 (class class class)co 6974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-xp 5409 df-dm 5413 df-iota 6149 df-fv 6193 df-ov 6977 |
This theorem is referenced by: mpondm0 7203 |
Copyright terms: Public domain | W3C validator |