MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssdmovg Structured version   Visualization version   GIF version

Theorem nssdmovg 7454
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.)
Assertion
Ref Expression
nssdmovg ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem nssdmovg
StepHypRef Expression
1 df-ov 7278 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ssel2 3916 . . . . 5 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
3 opelxp 5625 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3sylib 217 . . . 4 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐴𝑅𝐵𝑆))
54stoic1a 1775 . . 3 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmfv 6804 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl 17 . 2 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
81, 7eqtrid 2790 1 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  c0 4256  cop 4567   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  mpondm0  7510
  Copyright terms: Public domain W3C validator