MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssdmovg Structured version   Visualization version   GIF version

Theorem nssdmovg 7571
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.)
Assertion
Ref Expression
nssdmovg ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem nssdmovg
StepHypRef Expression
1 df-ov 7390 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ssel2 3941 . . . . 5 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
3 opelxp 5674 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3sylib 218 . . . 4 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐴𝑅𝐵𝑆))
54stoic1a 1772 . . 3 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmfv 6893 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl 17 . 2 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
81, 7eqtrid 2776 1 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  c0 4296  cop 4595   × cxp 5636  dom cdm 5638  cfv 6511  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  mpondm0  7629
  Copyright terms: Public domain W3C validator