Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nssdmovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.) |
Ref | Expression |
---|---|
nssdmovg | ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7332 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | ssel2 3926 | . . . . 5 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
3 | opelxp 5650 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) |
5 | 4 | stoic1a 1773 | . . 3 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | ndmfv 6854 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
8 | 1, 7 | eqtrid 2788 | 1 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ∅c0 4268 〈cop 4578 × cxp 5612 dom cdm 5614 ‘cfv 6473 (class class class)co 7329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: mpondm0 7564 |
Copyright terms: Public domain | W3C validator |