![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssdmovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.) |
Ref | Expression |
---|---|
nssdmovg | ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7451 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | ssel2 4003 | . . . . 5 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
3 | opelxp 5736 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) |
5 | 4 | stoic1a 1770 | . . 3 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | ndmfv 6955 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
8 | 1, 7 | eqtrid 2792 | 1 ⊢ ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 〈cop 4654 × cxp 5698 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: mpondm0 7690 |
Copyright terms: Public domain | W3C validator |