MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssdmovg Structured version   Visualization version   GIF version

Theorem nssdmovg 7144
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017.)
Assertion
Ref Expression
nssdmovg ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem nssdmovg
StepHypRef Expression
1 df-ov 6977 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ssel2 3847 . . . . 5 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
3 opelxp 5439 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3sylib 210 . . . 4 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐴𝑅𝐵𝑆))
54stoic1a 1735 . . 3 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmfv 6526 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl 17 . 2 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
81, 7syl5eq 2820 1 ((dom 𝐹 ⊆ (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  wss 3823  c0 4172  cop 4441   × cxp 5401  dom cdm 5403  cfv 6185  (class class class)co 6974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-xp 5409  df-dm 5413  df-iota 6149  df-fv 6193  df-ov 6977
This theorem is referenced by:  mpondm0  7203
  Copyright terms: Public domain W3C validator