Step | Hyp | Ref
| Expression |
1 | | fourierdlem81.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem81.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem81.p |
. . . . . . . . . . 11
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 43657 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
8 | 7 | simpld 495 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
9 | 8 | simpld 495 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
10 | 9 | eqcomd 2745 |
. . . 4
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
11 | 8 | simprd 496 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
12 | 11 | eqcomd 2745 |
. . . 4
⊢ (𝜑 → 𝐵 = (𝑄‘𝑀)) |
13 | 10, 12 | oveq12d 7302 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄‘𝑀))) |
14 | 13 | itgeq1d 43505 |
. 2
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑥) d𝑥) |
15 | | 0zd 12340 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
16 | | nnuz 12630 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
17 | | 0p1e1 12104 |
. . . . . 6
⊢ (0 + 1) =
1 |
18 | 17 | fveq2i 6786 |
. . . . 5
⊢
(ℤ≥‘(0 + 1)) =
(ℤ≥‘1) |
19 | 16, 18 | eqtr4i 2770 |
. . . 4
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
20 | 2, 19 | eleqtrdi 2850 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
21 | 6 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
22 | | reex 10971 |
. . . . . 6
⊢ ℝ
∈ V |
23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
24 | | ovex 7317 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
25 | 24 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
26 | 23, 25 | elmapd 8638 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
27 | 21, 26 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
28 | 7 | simprd 496 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
29 | 28 | r19.21bi 3135 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
30 | | fourierdlem81.f |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
31 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:ℝ⟶ℂ) |
32 | | fourierdlem81.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
33 | 9, 32 | eqeltrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
34 | | fourierdlem81.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
35 | 11, 34 | eqeltrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
36 | 33, 35 | iccssred 13175 |
. . . . 5
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) ⊆ ℝ) |
37 | 36 | sselda 3922 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ ℝ) |
38 | 31, 37 | ffvelrnd 6971 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
39 | 27 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
40 | | elfzofz 13412 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
42 | 39, 41 | ffvelrnd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
43 | | fzofzp1 13493 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
44 | 43 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
45 | 39, 44 | ffvelrnd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
46 | 30 | feqmptd 6846 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
47 | 46 | reseq1d 5893 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
48 | 47 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
49 | | ioossre 13149 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
51 | 50 | resmptd 5951 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
52 | 48, 51 | eqtr2d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
53 | | fourierdlem81.cncf |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
54 | | fourierdlem81.l |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
55 | | fourierdlem81.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
56 | 42, 45, 53, 54, 55 | iblcncfioo 43526 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈
𝐿1) |
57 | 52, 56 | eqeltrd 2840 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
58 | 30 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
59 | 42, 45 | iccssred 13175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ ℝ) |
60 | 59 | sselda 3922 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
61 | 58, 60 | ffvelrnd 6971 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
62 | 42, 45, 57, 61 | ibliooicc 43519 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
63 | 15, 20, 27, 29, 38, 62 | itgspltprt 43527 |
. 2
⊢ (𝜑 → ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
64 | | fourierdlem81.s |
. . . . . . . 8
⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇))) |
66 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
67 | 66 | oveq1d 7299 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
68 | 67 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
69 | 2 | nnnn0d 12302 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
70 | | nn0uz 12629 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
71 | 69, 70 | eleqtrdi 2850 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
72 | | eluzfz1 13272 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
73 | 71, 72 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
74 | | fourierdlem81.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
75 | 74 | rpred 12781 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℝ) |
76 | 33, 75 | readdcld 11013 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) + 𝑇) ∈ ℝ) |
77 | 65, 68, 73, 76 | fvmptd 6891 |
. . . . . 6
⊢ (𝜑 → (𝑆‘0) = ((𝑄‘0) + 𝑇)) |
78 | 9 | oveq1d 7299 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) + 𝑇) = (𝐴 + 𝑇)) |
79 | 77, 78 | eqtr2d 2780 |
. . . . 5
⊢ (𝜑 → (𝐴 + 𝑇) = (𝑆‘0)) |
80 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
81 | 80 | oveq1d 7299 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
82 | 81 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
83 | | eluzfz2 13273 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
84 | 71, 83 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
85 | 35, 75 | readdcld 11013 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) ∈ ℝ) |
86 | 65, 82, 84, 85 | fvmptd 6891 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝑀) = ((𝑄‘𝑀) + 𝑇)) |
87 | 11 | oveq1d 7299 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) = (𝐵 + 𝑇)) |
88 | 86, 87 | eqtr2d 2780 |
. . . . 5
⊢ (𝜑 → (𝐵 + 𝑇) = (𝑆‘𝑀)) |
89 | 79, 88 | oveq12d 7302 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = ((𝑆‘0)[,](𝑆‘𝑀))) |
90 | 89 | itgeq1d 43505 |
. . 3
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘0)[,](𝑆‘𝑀))(𝐹‘𝑥) d𝑥) |
91 | 27 | ffvelrnda 6970 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
92 | 75 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑇 ∈ ℝ) |
93 | 91, 92 | readdcld 11013 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
94 | 93, 64 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝑆:(0...𝑀)⟶ℝ) |
95 | 75 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℝ) |
96 | 42, 45, 95, 29 | ltadd1dd 11595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
97 | 40, 93 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
98 | 64 | fvmpt2 6895 |
. . . . . 6
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) + 𝑇) ∈ ℝ) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
99 | 41, 97, 98 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
100 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
101 | 100 | oveq1d 7299 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑗) + 𝑇)) |
102 | 101 | cbvmptv 5188 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
103 | 64, 102 | eqtri 2767 |
. . . . . . 7
⊢ 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
104 | 103 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))) |
105 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
106 | 105 | oveq1d 7299 |
. . . . . . 7
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
107 | 106 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
108 | 45, 95 | readdcld 11013 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
109 | 104, 107,
44, 108 | fvmptd 6891 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
110 | 96, 99, 109 | 3brtr4d 5107 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
111 | 30 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝐹:ℝ⟶ℂ) |
112 | 77, 76 | eqeltrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘0) ∈ ℝ) |
113 | 112 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝑆‘0) ∈ ℝ) |
114 | 86, 85 | eqeltrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑀) ∈ ℝ) |
115 | 114 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝑆‘𝑀) ∈ ℝ) |
116 | 113, 115 | iccssred 13175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → ((𝑆‘0)[,](𝑆‘𝑀)) ⊆ ℝ) |
117 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) |
118 | 116, 117 | sseldd 3923 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝑥 ∈ ℝ) |
119 | 111, 118 | ffvelrnd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
120 | 99, 97 | eqeltrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) ∈ ℝ) |
121 | 109, 108 | eqeltrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
122 | | ioosscn 13150 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
123 | 122 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
124 | | eqeq1 2743 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
125 | 124 | rexbidv 3227 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
126 | | oveq1 7291 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) |
127 | 126 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
128 | 127 | cbvrexvw 3385 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)) |
129 | 125, 128 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇))) |
130 | 129 | cbvrabv 3427 |
. . . . . . . 8
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} |
131 | | fdm 6618 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
132 | 30, 131 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = ℝ) |
133 | 132 | feq2d 6595 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ)) |
134 | 30, 133 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
135 | 134 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:dom 𝐹⟶ℂ) |
136 | | elioore 13118 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ℝ) |
137 | 136 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ) |
138 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
139 | 137, 138 | readdcld 11013 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) ∈ ℝ) |
140 | 139 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) ∈ ℝ) |
141 | 140 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ) |
142 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇)) |
143 | 132 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → dom 𝐹 = ℝ) |
144 | 143 | 3adant1r 1176 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → dom 𝐹 = ℝ) |
145 | 141, 142,
144 | 3eltr4d 2855 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ dom 𝐹) |
146 | 145 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹))) |
147 | 146 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ℂ) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹))) |
148 | 147 | rexlimdv 3213 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ℂ) → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
149 | 148 | ralrimiva 3104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑤 ∈ ℂ (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
150 | | rabss 4006 |
. . . . . . . . 9
⊢ ({𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹 ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
151 | 149, 150 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹) |
152 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
153 | 32 | rexrd 11034 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
154 | 153 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
155 | 34 | rexrd 11034 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
156 | 155 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
157 | 3, 2, 1 | fourierdlem15 43670 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
158 | 157 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
159 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
160 | | ioossicc 13174 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
161 | 160 | sseli 3918 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
162 | 161 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
163 | 154, 156,
158, 159, 162 | fourierdlem1 43656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
164 | | fourierdlem81.fper |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
165 | 152, 163,
164 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
166 | 123, 95, 130, 135, 151, 165, 53 | cncfperiod 43427 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
167 | 125 | elrab 3625 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
168 | 167 | simprbi 497 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
169 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
170 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
171 | | nfre1 3240 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) |
172 | 170, 171 | nfan 1903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
173 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))) |
174 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
175 | 139 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ) |
176 | 174, 175 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ℝ) |
177 | 176 | 3adant1r 1176 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ℝ) |
178 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
179 | 136 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ) |
180 | 75 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
181 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
182 | 42 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
183 | 182 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
184 | 45 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
185 | 184 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
186 | | elioo2 13129 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) →
(𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1))))) |
187 | 183, 185,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1))))) |
188 | 181, 187 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1)))) |
189 | 188 | simp2d 1142 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑧) |
190 | 178, 179,
180, 189 | ltadd1dd 11595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) + 𝑇) < (𝑧 + 𝑇)) |
191 | 190 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑄‘𝑖) + 𝑇) < (𝑧 + 𝑇)) |
192 | 99 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
193 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
194 | 191, 192,
193 | 3brtr4d 5107 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) < 𝑥) |
195 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
196 | 188 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 < (𝑄‘(𝑖 + 1))) |
197 | 179, 195,
180, 196 | ltadd1dd 11595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
198 | 197 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
199 | 109 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
200 | 198, 193,
199 | 3brtr4d 5107 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 < (𝑆‘(𝑖 + 1))) |
201 | 177, 194,
200 | 3jca 1127 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
202 | 201 | 3exp 1118 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))))) |
203 | 202 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))))) |
204 | 172, 173,
203 | rexlimd 3251 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
205 | 169, 204 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
206 | 120 | rexrd 11034 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) ∈
ℝ*) |
207 | 206 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) ∈
ℝ*) |
208 | 121 | rexrd 11034 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
209 | 208 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
210 | | elioo2 13129 |
. . . . . . . . . . . . . 14
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ*) →
(𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
211 | 207, 209,
210 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
212 | 205, 211 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
213 | 168, 212 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
214 | | elioore 13118 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
215 | 214 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℂ) |
216 | 215 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
217 | 182 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
218 | 184 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
219 | 214 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
220 | 75 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
221 | 219, 220 | resubcld 11412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
222 | 221 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
223 | 99 | oveq1d 7299 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
224 | 42 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
225 | 95 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℂ) |
226 | 224, 225 | pncand 11342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇) − 𝑇) = (𝑄‘𝑖)) |
227 | 223, 226 | eqtr2d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
228 | 227 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
229 | 120 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈ ℝ) |
230 | 214 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
231 | 75 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
232 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
233 | 206 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈
ℝ*) |
234 | 208 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
235 | 233, 234,
210 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
236 | 232, 235 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
237 | 236 | simp2d 1142 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) < 𝑥) |
238 | 229, 230,
231, 237 | ltsub1dd 11596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑆‘𝑖) − 𝑇) < (𝑥 − 𝑇)) |
239 | 228, 238 | eqbrtrd 5097 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
240 | 121 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
241 | 236 | simp3d 1143 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 < (𝑆‘(𝑖 + 1))) |
242 | 230, 240,
231, 241 | ltsub1dd 11596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) < ((𝑆‘(𝑖 + 1)) − 𝑇)) |
243 | 109 | oveq1d 7299 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
244 | 45 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
245 | 244, 225 | pncand 11342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
246 | 243, 245 | eqtrd 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
247 | 246 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
248 | 242, 247 | breqtrd 5101 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
249 | 217, 218,
222, 239, 248 | eliood 43043 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
250 | 219 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
251 | 220 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℂ) |
252 | 250, 251 | npcand 11345 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
253 | 252 | eqcomd 2745 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
254 | 253 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
255 | | oveq1 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑧 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
256 | 255 | eqeq2d 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = ((𝑥 − 𝑇) + 𝑇))) |
257 | 256 | rspcev 3562 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = ((𝑥 − 𝑇) + 𝑇)) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
258 | 249, 254,
257 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
259 | 216, 258,
167 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
260 | 213, 259 | impbida 798 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
261 | 260 | eqrdv 2737 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
262 | 261 | reseq2d 5894 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
263 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
264 | | ioossre 13149 |
. . . . . . . . . 10
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ |
265 | 264 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ) |
266 | 263, 265 | feqresmpt 6847 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
267 | 262, 266 | eqtrd 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
268 | 261 | oveq1d 7299 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ) = (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
269 | 166, 267,
268 | 3eltr3d 2854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
270 | 49, 132 | sseqtrrid 3975 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
271 | 270 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
272 | | eqid 2739 |
. . . . . . . 8
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} |
273 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
274 | 153 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
275 | 155 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
276 | 157 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
277 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
278 | 160, 181 | sselid 3920 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
279 | 274, 275,
276, 277, 278 | fourierdlem1 43656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ (𝐴[,]𝐵)) |
280 | | eleq1 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵))) |
281 | 280 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)))) |
282 | | oveq1 7291 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 + 𝑇) = (𝑧 + 𝑇)) |
283 | 282 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑧 + 𝑇))) |
284 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
285 | 283, 284 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧))) |
286 | 281, 285 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)))) |
287 | 286, 164 | chvarvv 2003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
288 | 273, 279,
287 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
289 | 135, 123,
271, 225, 272, 151, 288, 54 | limcperiod 43176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇))) |
290 | 109 | eqcomd 2745 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
291 | 267, 290 | oveq12d 7302 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘(𝑖 + 1)))) |
292 | 289, 291 | eleqtrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘(𝑖 + 1)))) |
293 | 135, 123,
271, 225, 272, 151, 288, 55 | limcperiod 43176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇))) |
294 | 99 | eqcomd 2745 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
295 | 267, 294 | oveq12d 7302 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇)) = ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘𝑖))) |
296 | 293, 295 | eleqtrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘𝑖))) |
297 | 120, 121,
269, 292, 296 | iblcncfioo 43526 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
298 | 30 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
299 | 120 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈ ℝ) |
300 | 121 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
301 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
302 | | eliccre 43050 |
. . . . . . 7
⊢ (((𝑆‘𝑖) ∈ ℝ ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
303 | 299, 300,
301, 302 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
304 | 298, 303 | ffvelrnd 6971 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
305 | 120, 121,
297, 304 | ibliooicc 43519 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
306 | 15, 20, 94, 110, 119, 305 | itgspltprt 43527 |
. . 3
⊢ (𝜑 → ∫((𝑆‘0)[,](𝑆‘𝑀))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
307 | | iftrue 4466 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑆‘𝑖) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
308 | 307 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
309 | | fourierdlem81.g |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
310 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = 𝑅) |
311 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
312 | 310, 311 | eqtr4d 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
313 | 312 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝑄‘𝑖)) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
314 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
315 | 314 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
316 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = 𝐿) |
317 | 316 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = 𝐿) |
318 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
319 | 318 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
320 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
321 | 320 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
322 | 319, 321 | eqtr2d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝐿 = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
323 | 315, 317,
322 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
324 | 323 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
325 | 314 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
326 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
327 | 326 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
328 | 318 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
329 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) |
330 | 329 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) |
331 | 182 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
332 | 184 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
333 | 60 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
334 | 42 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
335 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ∈ ℝ) |
336 | 182 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈
ℝ*) |
337 | 184 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
338 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
339 | | iccgelb 13144 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ 𝑥) |
340 | 336, 337,
338, 339 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ≤ 𝑥) |
341 | | neqne 2952 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑥 = (𝑄‘𝑖) → 𝑥 ≠ (𝑄‘𝑖)) |
342 | 341 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ≠ (𝑄‘𝑖)) |
343 | 334, 335,
340, 342 | leneltd 11138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) < 𝑥) |
344 | 343 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) < 𝑥) |
345 | 45 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
346 | 182 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
347 | 184 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
348 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
349 | | iccleub 13143 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
350 | 346, 347,
348, 349 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
351 | 350 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
352 | | neqne 2952 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → 𝑥 ≠ (𝑄‘(𝑖 + 1))) |
353 | 352 | necomd 3000 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ 𝑥) |
354 | 353 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ 𝑥) |
355 | 333, 345,
351, 354 | leneltd 11138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1))) |
356 | 331, 332,
333, 344, 355 | eliood 43043 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
357 | | fvres 6802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
358 | 356, 357 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
359 | 328, 330,
358 | 3eqtrrd 2784 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝐹‘𝑥) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
360 | 325, 327,
359 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
361 | 324, 360 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
362 | 313, 361 | pm2.61dan 810 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
363 | 362 | mpteq2dva 5175 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))) |
364 | 309, 363 | eqtrid 2791 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))) |
365 | | eqeq1 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑥 = (𝑄‘𝑖) ↔ 𝑤 = (𝑄‘𝑖))) |
366 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → (𝑥 = (𝑄‘(𝑖 + 1)) ↔ 𝑤 = (𝑄‘(𝑖 + 1)))) |
367 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) |
368 | 366, 367 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) |
369 | 365, 368 | ifbieq2d 4486 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)))) |
370 | 369 | cbvmptv 5188 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)))) |
371 | 364, 370 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
372 | 371 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
373 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → 𝑤 = (𝑥 − 𝑇)) |
374 | | oveq1 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘𝑖) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
375 | 374 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
376 | 227 | eqcomd 2745 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) = (𝑄‘𝑖)) |
377 | 376 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → ((𝑆‘𝑖) − 𝑇) = (𝑄‘𝑖)) |
378 | 373, 375,
377 | 3eqtrd 2783 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → 𝑤 = (𝑄‘𝑖)) |
379 | 378 | iftrued 4468 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝑅) |
380 | 374 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
381 | 42, 45, 29 | ltled 11132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) |
382 | | lbicc2 13205 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
383 | 182, 184,
381, 382 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
384 | 376, 383 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
385 | 384 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → ((𝑆‘𝑖) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
386 | 380, 385 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
387 | | limccl 25048 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ⊆ ℂ |
388 | 387, 55 | sselid 3920 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ℂ) |
389 | 388 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → 𝑅 ∈ ℂ) |
390 | 372, 379,
386, 389 | fvmptd 6891 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝐺‘(𝑥 − 𝑇)) = 𝑅) |
391 | 308, 390 | eqtr4d 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
392 | 391 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
393 | | iffalse 4469 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = (𝑆‘𝑖) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
394 | 393 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
395 | 371 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
396 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → (𝑤 = (𝑄‘𝑖) ↔ ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖))) |
397 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → (𝑤 = (𝑄‘(𝑖 + 1)) ↔ ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)))) |
398 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
399 | 397, 398 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) |
400 | 396, 399 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))))) |
401 | 400 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))))) |
402 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖) ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘𝑖))) |
403 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))) = 𝐿) |
404 | 402, 403 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
405 | 246, 404 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
406 | 405 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
407 | 42, 29 | gtned 11119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≠ (𝑄‘𝑖)) |
408 | 407 | neneqd 2949 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ (𝑄‘(𝑖 + 1)) = (𝑄‘𝑖)) |
409 | 408 | iffalsed 4471 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿) = 𝐿) |
410 | 409 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿) = 𝐿) |
411 | 401, 406,
410 | 3eqtrd 2783 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝐿) |
412 | 411 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝐿) |
413 | | ubicc2 13206 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
414 | 182, 184,
381, 413 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
415 | 246, 414 | eqeltrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
416 | 415 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝑆‘(𝑖 + 1)) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
417 | | limccl 25048 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ⊆ ℂ |
418 | 417, 54 | sselid 3920 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ℂ) |
419 | 418 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐿 ∈ ℂ) |
420 | 395, 412,
416, 419 | fvmptd 6891 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇)) = 𝐿) |
421 | | oveq1 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → (𝑥 − 𝑇) = ((𝑆‘(𝑖 + 1)) − 𝑇)) |
422 | 421 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → (𝐺‘(𝑥 − 𝑇)) = (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
423 | 422 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
424 | | iftrue 4466 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
425 | 424 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
426 | 420, 423,
425 | 3eqtr4rd 2790 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
427 | 426 | ad4ant14 749 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
428 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
429 | 428 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
430 | 371 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
431 | 430 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
432 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑥 − 𝑇) → (𝑤 = (𝑄‘𝑖) ↔ (𝑥 − 𝑇) = (𝑄‘𝑖))) |
433 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝑥 − 𝑇) → (𝑤 = (𝑄‘(𝑖 + 1)) ↔ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)))) |
434 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝑥 − 𝑇) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
435 | 433, 434 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑥 − 𝑇) → if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
436 | 432, 435 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑥 − 𝑇) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))))) |
437 | 436 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))))) |
438 | 303 | recnd 11012 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
439 | 225 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℂ) |
440 | 438, 439 | npcand 11345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
441 | 440 | eqcomd 2745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
442 | 441 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
443 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 − 𝑇) = (𝑄‘𝑖) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
444 | 443 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
445 | 294 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
446 | 442, 444,
445 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → 𝑥 = (𝑆‘𝑖)) |
447 | 446 | stoic1a 1775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → ¬ (𝑥 − 𝑇) = (𝑄‘𝑖)) |
448 | 447 | iffalsed 4471 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
449 | 448 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
450 | 441 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
451 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
452 | 451 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
453 | 290 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
454 | 450, 452,
453 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → 𝑥 = (𝑆‘(𝑖 + 1))) |
455 | 454 | stoic1a 1775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ¬ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) |
456 | 455 | iffalsed 4471 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
457 | 456 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
458 | 457 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
459 | 437, 449,
458 | 3eqtrd 2783 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
460 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
461 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
462 | 75 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
463 | 303, 462 | resubcld 11412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
464 | 227 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
465 | 206 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈
ℝ*) |
466 | 208 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
467 | | iccgelb 13144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ≤ 𝑥) |
468 | 465, 466,
301, 467 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ≤ 𝑥) |
469 | 299, 303,
462, 468 | lesub1dd 11600 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑆‘𝑖) − 𝑇) ≤ (𝑥 − 𝑇)) |
470 | 464, 469 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
471 | | iccleub 13143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
472 | 465, 466,
301, 471 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
473 | 303, 300,
462, 472 | lesub1dd 11600 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ≤ ((𝑆‘(𝑖 + 1)) − 𝑇)) |
474 | 246 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
475 | 473, 474 | breqtrd 5101 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
476 | 460, 461,
463, 470, 475 | eliccd 43049 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
477 | 476 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
478 | 135, 271 | fssresd 6650 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
479 | 478 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
480 | 182 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
481 | 184 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
482 | 303 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
483 | 95 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑇 ∈ ℝ) |
484 | 482, 483 | resubcld 11412 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ℝ) |
485 | 42 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
486 | 463 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ∈ ℝ) |
487 | 470 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
488 | 447 | neqned 2951 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ≠ (𝑄‘𝑖)) |
489 | 485, 486,
487, 488 | leneltd 11138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
490 | 489 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
491 | 463 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ℝ) |
492 | 45 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
493 | 475 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
494 | | eqcom 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇)) |
495 | 454 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) → 𝑥 = (𝑆‘(𝑖 + 1)))) |
496 | 494, 495 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇) → 𝑥 = (𝑆‘(𝑖 + 1)))) |
497 | 496 | con3dimp 409 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ¬ (𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇)) |
498 | 497 | neqned 2951 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ (𝑥 − 𝑇)) |
499 | 491, 492,
493, 498 | leneltd 11138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
500 | 499 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
501 | 480, 481,
484, 490, 500 | eliood 43043 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
502 | 479, 501 | ffvelrnd 6971 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) ∈ ℂ) |
503 | 431, 459,
477, 502 | fvmptd 6891 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
504 | | fvres 6802 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
505 | 501, 504 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
506 | 503, 505 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
507 | 465 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘𝑖) ∈
ℝ*) |
508 | 466 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
509 | 120 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) ∈ ℝ) |
510 | 303 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → 𝑥 ∈ ℝ) |
511 | 468 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) ≤ 𝑥) |
512 | | neqne 2952 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 = (𝑆‘𝑖) → 𝑥 ≠ (𝑆‘𝑖)) |
513 | 512 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → 𝑥 ≠ (𝑆‘𝑖)) |
514 | 509, 510,
511, 513 | leneltd 11138 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) < 𝑥) |
515 | 514 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘𝑖) < 𝑥) |
516 | 300 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
517 | 472 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
518 | | neqne 2952 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → 𝑥 ≠ (𝑆‘(𝑖 + 1))) |
519 | 518 | necomd 3000 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → (𝑆‘(𝑖 + 1)) ≠ 𝑥) |
520 | 519 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ≠ 𝑥) |
521 | 482, 516,
517, 520 | leneltd 11138 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 < (𝑆‘(𝑖 + 1))) |
522 | 507, 508,
482, 515, 521 | eliood 43043 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
523 | | fvres 6802 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
524 | 522, 523 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
525 | 440 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
526 | 525 | eqcomd 2745 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘𝑥) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
527 | 526 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹‘𝑥) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
528 | 438, 439 | subcld 11341 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℂ) |
529 | | elex 3451 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 − 𝑇) ∈ ℂ → (𝑥 − 𝑇) ∈ V) |
530 | 528, 529 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ V) |
531 | 530 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ V) |
532 | | simp-4l 780 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝜑) |
533 | 153 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
534 | 155 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
535 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
536 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
537 | 533, 534,
535, 536 | fourierdlem8 43663 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
538 | 537 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
539 | 538, 476 | sseldd 3923 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
540 | 539 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
541 | 532, 540 | jca 512 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
542 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
543 | 542 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)))) |
544 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
545 | 544 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
546 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 − 𝑇))) |
547 | 545, 546 | eqeq12d 2755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
548 | 543, 547 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 − 𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))))) |
549 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵))) |
550 | 549 | anbi2d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)))) |
551 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
552 | 551 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
553 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
554 | 552, 553 | eqeq12d 2755 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
555 | 550, 554 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
556 | 555, 164 | chvarvv 2003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
557 | 548, 556 | vtoclg 3506 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 − 𝑇) ∈ V → ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
558 | 531, 541,
557 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
559 | 524, 527,
558 | 3eqtrd 2783 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘(𝑥 − 𝑇))) |
560 | 506, 559 | eqtr4d 2782 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
561 | 429, 560 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
562 | 427, 561 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
563 | 394, 562 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
564 | 392, 563 | pm2.61dan 810 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
565 | 308, 389 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
566 | 565 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
567 | 425, 419 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
568 | 567 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
569 | 263, 265 | fssresd 6650 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))):((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))⟶ℂ) |
570 | 569 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))):((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))⟶ℂ) |
571 | 570, 522 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) ∈ ℂ) |
572 | 429, 571 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
573 | 568, 572 | pm2.61dan 810 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
574 | 394, 573 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
575 | 566, 574 | pm2.61dan 810 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
576 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
577 | 576 | fvmpt2 6895 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ∧ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
578 | 301, 575,
577 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
579 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
580 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
581 | 579, 580,
42, 45, 53, 54, 55 | cncfiooicc 43442 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ)) |
582 | 364, 581 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ)) |
583 | | cncff 24065 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
584 | 582, 583 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
585 | 584 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
586 | 585, 476 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) |
587 | | fourierdlem81.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐺‘(𝑥 − 𝑇))) |
588 | 587 | fvmpt2 6895 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ∧ (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
589 | 301, 586,
588 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
590 | 564, 578,
589 | 3eqtr4rd 2790 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐻‘𝑥) = ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥)) |
591 | 590 | itgeq2dv 24955 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥) |
592 | | ioossicc 13174 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) |
593 | 592 | sseli 3918 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
594 | 593 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
595 | 593, 575 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
596 | 594, 595,
577 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
597 | 229, 237 | gtned 11119 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ≠ (𝑆‘𝑖)) |
598 | 597 | neneqd 2949 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑆‘𝑖)) |
599 | 598 | iffalsed 4471 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
600 | 230, 241 | ltned 11120 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ≠ (𝑆‘(𝑖 + 1))) |
601 | 600 | neneqd 2949 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑆‘(𝑖 + 1))) |
602 | 601 | iffalsed 4471 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
603 | 523 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
604 | 602, 603 | eqtrd 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐹‘𝑥)) |
605 | 596, 599,
604 | 3eqtrd 2783 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = (𝐹‘𝑥)) |
606 | 605 | itgeq2dv 24955 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
607 | 578, 575 | eqeltrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) ∈ ℂ) |
608 | 120, 121,
607 | itgioo 24989 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥) |
609 | 120, 121,
304 | itgioo 24989 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
610 | 606, 608,
609 | 3eqtr3d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
611 | 591, 610 | eqtr2d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥) |
612 | 99, 109 | oveq12d 7302 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) = (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) |
613 | 612 | itgeq1d 43505 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))(𝐻‘𝑥) d𝑥) |
614 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) |
615 | 612 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
616 | 615 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
617 | 614, 616 | eleqtrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
618 | 584 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
619 | 42 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ∈ ℝ) |
620 | 45 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
621 | 97 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
622 | 108 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
623 | | eliccre 43050 |
. . . . . . . . . . . . 13
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
624 | 621, 622,
614, 623 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
625 | 75 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
626 | 624, 625 | resubcld 11412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
627 | 226 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
628 | 627 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
629 | 621 | rexrd 11034 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
630 | 622 | rexrd 11034 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
631 | | iccgelb 13144 |
. . . . . . . . . . . . . 14
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ≤ 𝑥) |
632 | 629, 630,
614, 631 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ≤ 𝑥) |
633 | 621, 624,
625, 632 | lesub1dd 11600 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇) − 𝑇) ≤ (𝑥 − 𝑇)) |
634 | 628, 633 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
635 | | iccleub 13143 |
. . . . . . . . . . . . . 14
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ≤ ((𝑄‘(𝑖 + 1)) + 𝑇)) |
636 | 629, 630,
614, 635 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ≤ ((𝑄‘(𝑖 + 1)) + 𝑇)) |
637 | 624, 622,
625, 636 | lesub1dd 11600 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
638 | 245 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
639 | 637, 638 | breqtrd 5101 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
640 | 619, 620,
626, 634, 639 | eliccd 43049 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
641 | 618, 640 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) |
642 | 617, 641,
588 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
643 | | eqidd 2740 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇))) = (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))) |
644 | | oveq1 7291 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 − 𝑇) = (𝑥 − 𝑇)) |
645 | 644 | fveq2d 6787 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝐺‘(𝑦 − 𝑇)) = (𝐺‘(𝑥 − 𝑇))) |
646 | 645 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) ∧ 𝑦 = 𝑥) → (𝐺‘(𝑦 − 𝑇)) = (𝐺‘(𝑥 − 𝑇))) |
647 | 643, 646,
614, 641 | fvmptd 6891 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
648 | 642, 647 | eqtr4d 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐻‘𝑥) = ((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥)) |
649 | 648 | itgeq2dv 24955 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))(𝐻‘𝑥) d𝑥 = ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) d𝑥) |
650 | 74 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈
ℝ+) |
651 | 645 | cbvmptv 5188 |
. . . . . . 7
⊢ (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇))) = (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑥 − 𝑇))) |
652 | 42, 45, 381, 582, 650, 651 | itgiccshift 43528 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥) |
653 | 613, 649,
652 | 3eqtrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥) |
654 | 132 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom 𝐹 = ℝ) |
655 | 59, 654 | sseqtrrd 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
656 | 42, 45, 135, 53, 655, 55, 54, 309 | itgioocnicc 43525 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ∈ 𝐿1 ∧
∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥)) |
657 | 656 | simprd 496 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
658 | 611, 653,
657 | 3eqtrd 2783 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
659 | 658 | sumeq2dv 15424 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
660 | 90, 306, 659 | 3eqtrrd 2784 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥) |
661 | 14, 63, 660 | 3eqtrrd 2784 |
1
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |