| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem81.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem81.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem81.p |
. . . . . . . . . . 11
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 46124 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 8 | 7 | simpld 494 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 9 | 8 | simpld 494 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 10 | 9 | eqcomd 2743 |
. . . 4
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
| 11 | 8 | simprd 495 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 12 | 11 | eqcomd 2743 |
. . . 4
⊢ (𝜑 → 𝐵 = (𝑄‘𝑀)) |
| 13 | 10, 12 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄‘𝑀))) |
| 14 | 13 | itgeq1d 45972 |
. 2
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑥) d𝑥) |
| 15 | | 0zd 12625 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 16 | | nnuz 12921 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 17 | | 0p1e1 12388 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 18 | 17 | fveq2i 6909 |
. . . . 5
⊢
(ℤ≥‘(0 + 1)) =
(ℤ≥‘1) |
| 19 | 16, 18 | eqtr4i 2768 |
. . . 4
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
| 20 | 2, 19 | eleqtrdi 2851 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
| 21 | 6 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
| 22 | | reex 11246 |
. . . . . 6
⊢ ℝ
∈ V |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 24 | | ovex 7464 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
| 25 | 24 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
| 26 | 23, 25 | elmapd 8880 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
| 27 | 21, 26 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 28 | 7 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 29 | 28 | r19.21bi 3251 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 30 | | fourierdlem81.f |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:ℝ⟶ℂ) |
| 32 | | fourierdlem81.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 33 | 9, 32 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 34 | | fourierdlem81.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 35 | 11, 34 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
| 36 | 33, 35 | iccssred 13474 |
. . . . 5
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) ⊆ ℝ) |
| 37 | 36 | sselda 3983 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ ℝ) |
| 38 | 31, 37 | ffvelcdmd 7105 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
| 39 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 40 | | elfzofz 13715 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 41 | 40 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 42 | 39, 41 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 43 | | fzofzp1 13803 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 44 | 43 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 45 | 39, 44 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 46 | 30 | feqmptd 6977 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
| 47 | 46 | reseq1d 5996 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 48 | 47 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 49 | | ioossre 13448 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
| 50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
| 51 | 50 | resmptd 6058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 52 | 48, 51 | eqtr2d 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 53 | | fourierdlem81.cncf |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 54 | | fourierdlem81.l |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 55 | | fourierdlem81.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 56 | 42, 45, 53, 54, 55 | iblcncfioo 45993 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈
𝐿1) |
| 57 | 52, 56 | eqeltrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 58 | 30 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
| 59 | 42, 45 | iccssred 13474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ ℝ) |
| 60 | 59 | sselda 3983 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 61 | 58, 60 | ffvelcdmd 7105 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
| 62 | 42, 45, 57, 61 | ibliooicc 45986 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 63 | 15, 20, 27, 29, 38, 62 | itgspltprt 45994 |
. 2
⊢ (𝜑 → ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 64 | | fourierdlem81.s |
. . . . . . . 8
⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
| 65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇))) |
| 66 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 67 | 66 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
| 68 | 67 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
| 69 | 2 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 70 | | nn0uz 12920 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 71 | 69, 70 | eleqtrdi 2851 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 72 | | eluzfz1 13571 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 73 | 71, 72 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 74 | | fourierdlem81.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 75 | 74 | rpred 13077 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 76 | 33, 75 | readdcld 11290 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) + 𝑇) ∈ ℝ) |
| 77 | 65, 68, 73, 76 | fvmptd 7023 |
. . . . . 6
⊢ (𝜑 → (𝑆‘0) = ((𝑄‘0) + 𝑇)) |
| 78 | 9 | oveq1d 7446 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) + 𝑇) = (𝐴 + 𝑇)) |
| 79 | 77, 78 | eqtr2d 2778 |
. . . . 5
⊢ (𝜑 → (𝐴 + 𝑇) = (𝑆‘0)) |
| 80 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
| 81 | 80 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
| 82 | 81 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
| 83 | | eluzfz2 13572 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
| 84 | 71, 83 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 85 | 35, 75 | readdcld 11290 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) ∈ ℝ) |
| 86 | 65, 82, 84, 85 | fvmptd 7023 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝑀) = ((𝑄‘𝑀) + 𝑇)) |
| 87 | 11 | oveq1d 7446 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) = (𝐵 + 𝑇)) |
| 88 | 86, 87 | eqtr2d 2778 |
. . . . 5
⊢ (𝜑 → (𝐵 + 𝑇) = (𝑆‘𝑀)) |
| 89 | 79, 88 | oveq12d 7449 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = ((𝑆‘0)[,](𝑆‘𝑀))) |
| 90 | 89 | itgeq1d 45972 |
. . 3
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘0)[,](𝑆‘𝑀))(𝐹‘𝑥) d𝑥) |
| 91 | 27 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 92 | 75 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑇 ∈ ℝ) |
| 93 | 91, 92 | readdcld 11290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
| 94 | 93, 64 | fmptd 7134 |
. . . 4
⊢ (𝜑 → 𝑆:(0...𝑀)⟶ℝ) |
| 95 | 75 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℝ) |
| 96 | 42, 45, 95, 29 | ltadd1dd 11874 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 97 | 40, 93 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
| 98 | 64 | fvmpt2 7027 |
. . . . . 6
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) + 𝑇) ∈ ℝ) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
| 99 | 41, 97, 98 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
| 100 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 101 | 100 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑗) + 𝑇)) |
| 102 | 101 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
| 103 | 64, 102 | eqtri 2765 |
. . . . . . 7
⊢ 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
| 104 | 103 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))) |
| 105 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
| 106 | 105 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 107 | 106 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 108 | 45, 95 | readdcld 11290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
| 109 | 104, 107,
44, 108 | fvmptd 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 110 | 96, 99, 109 | 3brtr4d 5175 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
| 111 | 30 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝐹:ℝ⟶ℂ) |
| 112 | 77, 76 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘0) ∈ ℝ) |
| 113 | 112 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝑆‘0) ∈ ℝ) |
| 114 | 86, 85 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑀) ∈ ℝ) |
| 115 | 114 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝑆‘𝑀) ∈ ℝ) |
| 116 | 113, 115 | iccssred 13474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → ((𝑆‘0)[,](𝑆‘𝑀)) ⊆ ℝ) |
| 117 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) |
| 118 | 116, 117 | sseldd 3984 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → 𝑥 ∈ ℝ) |
| 119 | 111, 118 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘0)[,](𝑆‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
| 120 | 99, 97 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) ∈ ℝ) |
| 121 | 109, 108 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
| 122 | | ioosscn 13449 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 123 | 122 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
| 124 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
| 125 | 124 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
| 126 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) |
| 127 | 126 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
| 128 | 127 | cbvrexvw 3238 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)) |
| 129 | 125, 128 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇))) |
| 130 | 129 | cbvrabv 3447 |
. . . . . . . 8
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} |
| 131 | | fdm 6745 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
| 132 | 30, 131 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = ℝ) |
| 133 | 132 | feq2d 6722 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ)) |
| 134 | 30, 133 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
| 135 | 134 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:dom 𝐹⟶ℂ) |
| 136 | | elioore 13417 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ℝ) |
| 137 | 136 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ) |
| 138 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
| 139 | 137, 138 | readdcld 11290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) ∈ ℝ) |
| 140 | 139 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) ∈ ℝ) |
| 141 | 140 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ) |
| 142 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇)) |
| 143 | 132 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → dom 𝐹 = ℝ) |
| 144 | 143 | 3adant1r 1178 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → dom 𝐹 = ℝ) |
| 145 | 141, 142,
144 | 3eltr4d 2856 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ dom 𝐹) |
| 146 | 145 | 3exp 1120 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹))) |
| 147 | 146 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ℂ) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹))) |
| 148 | 147 | rexlimdv 3153 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ℂ) → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
| 149 | 148 | ralrimiva 3146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑤 ∈ ℂ (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
| 150 | | rabss 4072 |
. . . . . . . . 9
⊢ ({𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹 ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ dom 𝐹)) |
| 151 | 149, 150 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹) |
| 152 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
| 153 | 32 | rexrd 11311 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 154 | 153 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
| 155 | 34 | rexrd 11311 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 156 | 155 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
| 157 | 3, 2, 1 | fourierdlem15 46137 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 158 | 157 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 159 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
| 160 | | ioossicc 13473 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
| 161 | 160 | sseli 3979 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 162 | 161 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 163 | 154, 156,
158, 159, 162 | fourierdlem1 46123 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 164 | | fourierdlem81.fper |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 165 | 152, 163,
164 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 166 | 123, 95, 130, 135, 151, 165, 53 | cncfperiod 45894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
| 167 | 125 | elrab 3692 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
| 168 | 167 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
| 169 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
| 170 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
| 171 | | nfre1 3285 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) |
| 172 | 170, 171 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
| 173 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))) |
| 174 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
| 175 | 139 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ) |
| 176 | 174, 175 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ℝ) |
| 177 | 176 | 3adant1r 1178 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ℝ) |
| 178 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 179 | 136 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ) |
| 180 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
| 181 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 182 | 42 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
| 183 | 182 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 184 | 45 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 185 | 184 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 186 | | elioo2 13428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) →
(𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1))))) |
| 187 | 183, 185,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1))))) |
| 188 | 181, 187 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 ∈ ℝ ∧ (𝑄‘𝑖) < 𝑧 ∧ 𝑧 < (𝑄‘(𝑖 + 1)))) |
| 189 | 188 | simp2d 1144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑧) |
| 190 | 178, 179,
180, 189 | ltadd1dd 11874 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) + 𝑇) < (𝑧 + 𝑇)) |
| 191 | 190 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑄‘𝑖) + 𝑇) < (𝑧 + 𝑇)) |
| 192 | 99 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
| 193 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
| 194 | 191, 192,
193 | 3brtr4d 5175 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) < 𝑥) |
| 195 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 196 | 188 | simp3d 1145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 < (𝑄‘(𝑖 + 1))) |
| 197 | 179, 195,
180, 196 | ltadd1dd 11874 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑧 + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 198 | 197 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 199 | 109 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 200 | 198, 193,
199 | 3brtr4d 5175 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 < (𝑆‘(𝑖 + 1))) |
| 201 | 177, 194,
200 | 3jca 1129 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
| 202 | 201 | 3exp 1120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))))) |
| 203 | 202 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))))) |
| 204 | 172, 173,
203 | rexlimd 3266 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
| 205 | 169, 204 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
| 206 | 120 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) ∈
ℝ*) |
| 207 | 206 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑆‘𝑖) ∈
ℝ*) |
| 208 | 121 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
| 209 | 208 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
| 210 | | elioo2 13428 |
. . . . . . . . . . . . . 14
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ*) →
(𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
| 211 | 207, 209,
210 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
| 212 | 205, 211 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
| 213 | 168, 212 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
| 214 | | elioore 13417 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
| 215 | 214 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℂ) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
| 217 | 182 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 218 | 184 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 219 | 214 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 220 | 75 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
| 221 | 219, 220 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
| 222 | 221 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
| 223 | 99 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
| 224 | 42 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
| 225 | 95 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℂ) |
| 226 | 224, 225 | pncand 11621 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇) − 𝑇) = (𝑄‘𝑖)) |
| 227 | 223, 226 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
| 228 | 227 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
| 229 | 120 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈ ℝ) |
| 230 | 214 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 231 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
| 232 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
| 233 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈
ℝ*) |
| 234 | 208 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
| 235 | 233, 234,
210 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↔ (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1))))) |
| 236 | 232, 235 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 ∈ ℝ ∧ (𝑆‘𝑖) < 𝑥 ∧ 𝑥 < (𝑆‘(𝑖 + 1)))) |
| 237 | 236 | simp2d 1144 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) < 𝑥) |
| 238 | 229, 230,
231, 237 | ltsub1dd 11875 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑆‘𝑖) − 𝑇) < (𝑥 − 𝑇)) |
| 239 | 228, 238 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
| 240 | 121 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
| 241 | 236 | simp3d 1145 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 < (𝑆‘(𝑖 + 1))) |
| 242 | 230, 240,
231, 241 | ltsub1dd 11875 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) < ((𝑆‘(𝑖 + 1)) − 𝑇)) |
| 243 | 109 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
| 244 | 45 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 245 | 244, 225 | pncand 11621 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 246 | 243, 245 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 247 | 246 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 248 | 242, 247 | breqtrd 5169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
| 249 | 217, 218,
222, 239, 248 | eliood 45511 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 250 | 219 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
| 251 | 220 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℂ) |
| 252 | 250, 251 | npcand 11624 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
| 253 | 252 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
| 254 | 253 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
| 255 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑧 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
| 256 | 255 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = ((𝑥 − 𝑇) + 𝑇))) |
| 257 | 256 | rspcev 3622 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑥 = ((𝑥 − 𝑇) + 𝑇)) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
| 258 | 249, 254,
257 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)) |
| 259 | 216, 258,
167 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
| 260 | 213, 259 | impbida 801 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
| 261 | 260 | eqrdv 2735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
| 262 | 261 | reseq2d 5997 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
| 263 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
| 264 | | ioossre 13448 |
. . . . . . . . . 10
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ |
| 265 | 264 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ) |
| 266 | 263, 265 | feqresmpt 6978 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 267 | 262, 266 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 268 | 261 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ) = (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
| 269 | 166, 267,
268 | 3eltr3d 2855 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
| 270 | 49, 132 | sseqtrrid 4027 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
| 271 | 270 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
| 272 | | eqid 2737 |
. . . . . . . 8
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} |
| 273 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
| 274 | 153 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
| 275 | 155 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
| 276 | 157 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 277 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
| 278 | 160, 181 | sselid 3981 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 279 | 274, 275,
276, 277, 278 | fourierdlem1 46123 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ (𝐴[,]𝐵)) |
| 280 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵))) |
| 281 | 280 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)))) |
| 282 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 + 𝑇) = (𝑧 + 𝑇)) |
| 283 | 282 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑧 + 𝑇))) |
| 284 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 285 | 283, 284 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧))) |
| 286 | 281, 285 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)))) |
| 287 | 286, 164 | chvarvv 1998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
| 288 | 273, 279,
287 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
| 289 | 135, 123,
271, 225, 272, 151, 288, 54 | limcperiod 45643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇))) |
| 290 | 109 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
| 291 | 267, 290 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘(𝑖 + 1)))) |
| 292 | 289, 291 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘(𝑖 + 1)))) |
| 293 | 135, 123,
271, 225, 272, 151, 288, 55 | limcperiod 45643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇))) |
| 294 | 99 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
| 295 | 267, 294 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇)) = ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘𝑖))) |
| 296 | 293, 295 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑆‘𝑖))) |
| 297 | 120, 121,
269, 292, 296 | iblcncfioo 45993 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 298 | 30 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
| 299 | 120 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈ ℝ) |
| 300 | 121 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
| 301 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 302 | | eliccre 45518 |
. . . . . . 7
⊢ (((𝑆‘𝑖) ∈ ℝ ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 303 | 299, 300,
301, 302 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 304 | 298, 303 | ffvelcdmd 7105 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
| 305 | 120, 121,
297, 304 | ibliooicc 45986 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 306 | 15, 20, 94, 110, 119, 305 | itgspltprt 45994 |
. . 3
⊢ (𝜑 → ∫((𝑆‘0)[,](𝑆‘𝑀))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 307 | | iftrue 4531 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑆‘𝑖) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
| 308 | 307 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
| 309 | | fourierdlem81.g |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
| 310 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = 𝑅) |
| 311 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = 𝑅) |
| 312 | 310, 311 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 313 | 312 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝑄‘𝑖)) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 314 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
| 315 | 314 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
| 316 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = 𝐿) |
| 317 | 316 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = 𝐿) |
| 318 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑥 = (𝑄‘𝑖) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
| 319 | 318 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
| 320 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
| 321 | 320 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
| 322 | 319, 321 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝐿 = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 323 | 315, 317,
322 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑥 = (𝑄‘𝑖) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 324 | 323 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 325 | 314 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
| 326 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 327 | 326 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 328 | 318 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) |
| 329 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) |
| 330 | 329 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) |
| 331 | 182 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
| 332 | 184 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 333 | 60 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
| 334 | 42 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
| 335 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ∈ ℝ) |
| 336 | 182 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈
ℝ*) |
| 337 | 184 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 338 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 339 | | iccgelb 13443 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ 𝑥) |
| 340 | 336, 337,
338, 339 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) ≤ 𝑥) |
| 341 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑥 = (𝑄‘𝑖) → 𝑥 ≠ (𝑄‘𝑖)) |
| 342 | 341 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → 𝑥 ≠ (𝑄‘𝑖)) |
| 343 | 334, 335,
340, 342 | leneltd 11415 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → (𝑄‘𝑖) < 𝑥) |
| 344 | 343 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) < 𝑥) |
| 345 | 45 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 346 | 182 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 347 | 184 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 348 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 349 | | iccleub 13442 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
| 350 | 346, 347,
348, 349 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
| 351 | 350 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≤ (𝑄‘(𝑖 + 1))) |
| 352 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → 𝑥 ≠ (𝑄‘(𝑖 + 1))) |
| 353 | 352 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ 𝑥) |
| 354 | 353 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ 𝑥) |
| 355 | 333, 345,
351, 354 | leneltd 11415 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1))) |
| 356 | 331, 332,
333, 344, 355 | eliood 45511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 357 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
| 358 | 356, 357 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
| 359 | 328, 330,
358 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝐹‘𝑥) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 360 | 325, 327,
359 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 361 | 324, 360 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝑖)) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 362 | 313, 361 | pm2.61dan 813 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 363 | 362 | mpteq2dva 5242 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))) |
| 364 | 309, 363 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))) |
| 365 | | eqeq1 2741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑥 = (𝑄‘𝑖) ↔ 𝑤 = (𝑄‘𝑖))) |
| 366 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → (𝑥 = (𝑄‘(𝑖 + 1)) ↔ 𝑤 = (𝑄‘(𝑖 + 1)))) |
| 367 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) |
| 368 | 366, 367 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) |
| 369 | 365, 368 | ifbieq2d 4552 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))) = if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)))) |
| 370 | 369 | cbvmptv 5255 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)))) |
| 371 | 364, 370 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
| 372 | 371 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
| 373 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → 𝑤 = (𝑥 − 𝑇)) |
| 374 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘𝑖) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
| 375 | 374 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
| 376 | 227 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) = (𝑄‘𝑖)) |
| 377 | 376 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → ((𝑆‘𝑖) − 𝑇) = (𝑄‘𝑖)) |
| 378 | 373, 375,
377 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → 𝑤 = (𝑄‘𝑖)) |
| 379 | 378 | iftrued 4533 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝑅) |
| 380 | 374 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) = ((𝑆‘𝑖) − 𝑇)) |
| 381 | 42, 45, 29 | ltled 11409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) |
| 382 | | lbicc2 13504 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 383 | 182, 184,
381, 382 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 384 | 376, 383 | eqeltrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 385 | 384 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → ((𝑆‘𝑖) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 386 | 380, 385 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 387 | | limccl 25910 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ⊆ ℂ |
| 388 | 387, 55 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ℂ) |
| 389 | 388 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → 𝑅 ∈ ℂ) |
| 390 | 372, 379,
386, 389 | fvmptd 7023 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → (𝐺‘(𝑥 − 𝑇)) = 𝑅) |
| 391 | 308, 390 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
| 392 | 391 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
| 393 | | iffalse 4534 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = (𝑆‘𝑖) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
| 394 | 393 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
| 395 | 371 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
| 396 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → (𝑤 = (𝑄‘𝑖) ↔ ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖))) |
| 397 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → (𝑤 = (𝑄‘(𝑖 + 1)) ↔ ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)))) |
| 398 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
| 399 | 397, 398 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) |
| 400 | 396, 399 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))))) |
| 401 | 400 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))))) |
| 402 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖) ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘𝑖))) |
| 403 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇))) = 𝐿) |
| 404 | 402, 403 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
| 405 | 246, 404 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
| 406 | 405 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘𝑖), 𝑅, if(((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑆‘(𝑖 + 1)) − 𝑇)))) = if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿)) |
| 407 | 42, 29 | gtned 11396 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≠ (𝑄‘𝑖)) |
| 408 | 407 | neneqd 2945 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ (𝑄‘(𝑖 + 1)) = (𝑄‘𝑖)) |
| 409 | 408 | iffalsed 4536 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿) = 𝐿) |
| 410 | 409 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if((𝑄‘(𝑖 + 1)) = (𝑄‘𝑖), 𝑅, 𝐿) = 𝐿) |
| 411 | 401, 406,
410 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝐿) |
| 412 | 411 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = ((𝑆‘(𝑖 + 1)) − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = 𝐿) |
| 413 | | ubicc2 13505 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 414 | 182, 184,
381, 413 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 415 | 246, 414 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘(𝑖 + 1)) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 416 | 415 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝑆‘(𝑖 + 1)) − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 417 | | limccl 25910 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 418 | 417, 54 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ℂ) |
| 419 | 418 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐿 ∈ ℂ) |
| 420 | 395, 412,
416, 419 | fvmptd 7023 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇)) = 𝐿) |
| 421 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → (𝑥 − 𝑇) = ((𝑆‘(𝑖 + 1)) − 𝑇)) |
| 422 | 421 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → (𝐺‘(𝑥 − 𝑇)) = (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
| 423 | 422 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = (𝐺‘((𝑆‘(𝑖 + 1)) − 𝑇))) |
| 424 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘(𝑖 + 1)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
| 425 | 424 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = 𝐿) |
| 426 | 420, 423,
425 | 3eqtr4rd 2788 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
| 427 | 426 | ad4ant14 752 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
| 428 | | iffalse 4534 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
| 429 | 428 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
| 430 | 371 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
| 431 | 430 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝐺 = (𝑤 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))))) |
| 432 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑥 − 𝑇) → (𝑤 = (𝑄‘𝑖) ↔ (𝑥 − 𝑇) = (𝑄‘𝑖))) |
| 433 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝑥 − 𝑇) → (𝑤 = (𝑄‘(𝑖 + 1)) ↔ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)))) |
| 434 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝑥 − 𝑇) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 435 | 433, 434 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑥 − 𝑇) → if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤)) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
| 436 | 432, 435 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑥 − 𝑇) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))))) |
| 437 | 436 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))))) |
| 438 | 303 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
| 439 | 225 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℂ) |
| 440 | 438, 439 | npcand 11624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
| 441 | 440 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
| 442 | 441 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
| 443 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 − 𝑇) = (𝑄‘𝑖) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
| 444 | 443 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
| 445 | 294 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
| 446 | 442, 444,
445 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘𝑖)) → 𝑥 = (𝑆‘𝑖)) |
| 447 | 446 | stoic1a 1772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → ¬ (𝑥 − 𝑇) = (𝑄‘𝑖)) |
| 448 | 447 | iffalsed 4536 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
| 449 | 448 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if((𝑥 − 𝑇) = (𝑄‘𝑖), 𝑅, if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) = if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
| 450 | 441 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
| 451 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 452 | 451 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → ((𝑥 − 𝑇) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 453 | 290 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
| 454 | 450, 452,
453 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) → 𝑥 = (𝑆‘(𝑖 + 1))) |
| 455 | 454 | stoic1a 1772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ¬ (𝑥 − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 456 | 455 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 457 | 456 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 458 | 457 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 459 | 437, 449,
458 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 − 𝑇)) → if(𝑤 = (𝑄‘𝑖), 𝑅, if(𝑤 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑤))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 460 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 461 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 462 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑇 ∈ ℝ) |
| 463 | 303, 462 | resubcld 11691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℝ) |
| 464 | 227 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) = ((𝑆‘𝑖) − 𝑇)) |
| 465 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ∈
ℝ*) |
| 466 | 208 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
| 467 | | iccgelb 13443 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ≤ 𝑥) |
| 468 | 465, 466,
301, 467 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑆‘𝑖) ≤ 𝑥) |
| 469 | 299, 303,
462, 468 | lesub1dd 11879 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑆‘𝑖) − 𝑇) ≤ (𝑥 − 𝑇)) |
| 470 | 464, 469 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
| 471 | | iccleub 13442 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑖) ∈ ℝ* ∧ (𝑆‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
| 472 | 465, 466,
301, 471 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
| 473 | 303, 300,
462, 472 | lesub1dd 11879 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ≤ ((𝑆‘(𝑖 + 1)) − 𝑇)) |
| 474 | 246 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑆‘(𝑖 + 1)) − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 475 | 473, 474 | breqtrd 5169 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
| 476 | 460, 461,
463, 470, 475 | eliccd 45517 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 477 | 476 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 478 | 135, 271 | fssresd 6775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 479 | 478 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 480 | 182 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
| 481 | 184 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 482 | 303 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
| 483 | 95 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑇 ∈ ℝ) |
| 484 | 482, 483 | resubcld 11691 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ℝ) |
| 485 | 42 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
| 486 | 463 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ∈ ℝ) |
| 487 | 470 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
| 488 | 447 | neqned 2947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑥 − 𝑇) ≠ (𝑄‘𝑖)) |
| 489 | 485, 486,
487, 488 | leneltd 11415 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
| 490 | 489 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
| 491 | 463 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ℝ) |
| 492 | 45 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 493 | 475 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
| 494 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇)) |
| 495 | 454 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 − 𝑇) = (𝑄‘(𝑖 + 1)) → 𝑥 = (𝑆‘(𝑖 + 1)))) |
| 496 | 494, 495 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇) → 𝑥 = (𝑆‘(𝑖 + 1)))) |
| 497 | 496 | con3dimp 408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ¬ (𝑄‘(𝑖 + 1)) = (𝑥 − 𝑇)) |
| 498 | 497 | neqned 2947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ (𝑥 − 𝑇)) |
| 499 | 491, 492,
493, 498 | leneltd 11415 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
| 500 | 499 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
| 501 | 480, 481,
484, 490, 500 | eliood 45511 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 502 | 479, 501 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) ∈ ℂ) |
| 503 | 431, 459,
477, 502 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
| 504 | | fvres 6925 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
| 505 | 501, 504 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
| 506 | 503, 505 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
| 507 | 465 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘𝑖) ∈
ℝ*) |
| 508 | 466 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ∈
ℝ*) |
| 509 | 120 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) ∈ ℝ) |
| 510 | 303 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → 𝑥 ∈ ℝ) |
| 511 | 468 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) ≤ 𝑥) |
| 512 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 = (𝑆‘𝑖) → 𝑥 ≠ (𝑆‘𝑖)) |
| 513 | 512 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → 𝑥 ≠ (𝑆‘𝑖)) |
| 514 | 509, 510,
511, 513 | leneltd 11415 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → (𝑆‘𝑖) < 𝑥) |
| 515 | 514 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘𝑖) < 𝑥) |
| 516 | 300 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ∈ ℝ) |
| 517 | 472 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ≤ (𝑆‘(𝑖 + 1))) |
| 518 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → 𝑥 ≠ (𝑆‘(𝑖 + 1))) |
| 519 | 518 | necomd 2996 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑥 = (𝑆‘(𝑖 + 1)) → (𝑆‘(𝑖 + 1)) ≠ 𝑥) |
| 520 | 519 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑆‘(𝑖 + 1)) ≠ 𝑥) |
| 521 | 482, 516,
517, 520 | leneltd 11415 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 < (𝑆‘(𝑖 + 1))) |
| 522 | 507, 508,
482, 515, 521 | eliood 45511 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
| 523 | | fvres 6925 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
| 524 | 522, 523 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
| 525 | 440 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
| 526 | 525 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐹‘𝑥) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
| 527 | 526 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹‘𝑥) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
| 528 | 438, 439 | subcld 11620 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ ℂ) |
| 529 | | elex 3501 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 − 𝑇) ∈ ℂ → (𝑥 − 𝑇) ∈ V) |
| 530 | 528, 529 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ V) |
| 531 | 530 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ V) |
| 532 | | simp-4l 783 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → 𝜑) |
| 533 | 153 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
| 534 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
| 535 | 157 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 536 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
| 537 | 533, 534,
535, 536 | fourierdlem8 46130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
| 538 | 537 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
| 539 | 538, 476 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
| 540 | 539 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
| 541 | 532, 540 | jca 511 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
| 542 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
| 543 | 542 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)))) |
| 544 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
| 545 | 544 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
| 546 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 − 𝑇))) |
| 547 | 545, 546 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
| 548 | 543, 547 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 − 𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))))) |
| 549 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵))) |
| 550 | 549 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)))) |
| 551 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
| 552 | 551 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
| 553 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 554 | 552, 553 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
| 555 | 550, 554 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
| 556 | 555, 164 | chvarvv 1998 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
| 557 | 548, 556 | vtoclg 3554 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 − 𝑇) ∈ V → ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
| 558 | 531, 541,
557 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
| 559 | 524, 527,
558 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘(𝑥 − 𝑇))) |
| 560 | 506, 559 | eqtr4d 2780 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐺‘(𝑥 − 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
| 561 | 429, 560 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
| 562 | 427, 561 | pm2.61dan 813 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐺‘(𝑥 − 𝑇))) |
| 563 | 394, 562 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
| 564 | 392, 563 | pm2.61dan 813 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = (𝐺‘(𝑥 − 𝑇))) |
| 565 | 308, 389 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
| 566 | 565 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
| 567 | 425, 419 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
| 568 | 567 | ad4ant14 752 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
| 569 | 263, 265 | fssresd 6775 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))):((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))⟶ℂ) |
| 570 | 569 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))):((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))⟶ℂ) |
| 571 | 570, 522 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) ∈ ℂ) |
| 572 | 429, 571 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) ∧ ¬ 𝑥 = (𝑆‘(𝑖 + 1))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
| 573 | 568, 572 | pm2.61dan 813 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) ∈ ℂ) |
| 574 | 394, 573 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑆‘𝑖)) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
| 575 | 566, 574 | pm2.61dan 813 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
| 576 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
| 577 | 576 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ∧ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
| 578 | 301, 575,
577 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
| 579 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
| 580 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 581 | 579, 580,
42, 45, 53, 54, 55 | cncfiooicc 45909 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 582 | 364, 581 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 583 | | cncff 24919 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
| 584 | 582, 583 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
| 585 | 584 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
| 586 | 585, 476 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) |
| 587 | | fourierdlem81.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐺‘(𝑥 − 𝑇))) |
| 588 | 587 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ∧ (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
| 589 | 301, 586,
588 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
| 590 | 564, 578,
589 | 3eqtr4rd 2788 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → (𝐻‘𝑥) = ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥)) |
| 591 | 590 | itgeq2dv 25817 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥) |
| 592 | | ioossicc 13473 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) |
| 593 | 592 | sseli 3979 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 594 | 593 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 595 | 593, 575 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) ∈ ℂ) |
| 596 | 594, 595,
577 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)))) |
| 597 | 229, 237 | gtned 11396 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ≠ (𝑆‘𝑖)) |
| 598 | 597 | neneqd 2945 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑆‘𝑖)) |
| 599 | 598 | iffalsed 4536 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))) |
| 600 | 230, 241 | ltned 11397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → 𝑥 ≠ (𝑆‘(𝑖 + 1))) |
| 601 | 600 | neneqd 2945 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑆‘(𝑖 + 1))) |
| 602 | 601 | iffalsed 4536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) |
| 603 | 523 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
| 604 | 602, 603 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥)) = (𝐹‘𝑥)) |
| 605 | 596, 599,
604 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) = (𝐹‘𝑥)) |
| 606 | 605 | itgeq2dv 25817 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 607 | 578, 575 | eqeltrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) ∈ ℂ) |
| 608 | 120, 121,
607 | itgioo 25851 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥) |
| 609 | 120, 121,
304 | itgioo 25851 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 610 | 606, 608,
609 | 3eqtr3d 2785 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))((𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))‘𝑥))))‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 611 | 591, 610 | eqtr2d 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥) |
| 612 | 99, 109 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) = (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) |
| 613 | 612 | itgeq1d 45972 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))(𝐻‘𝑥) d𝑥) |
| 614 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) |
| 615 | 612 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 616 | 615 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 617 | 614, 616 | eleqtrd 2843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))) |
| 618 | 584 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐺:((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
| 619 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ∈ ℝ) |
| 620 | 45 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 621 | 97 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
| 622 | 108 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
| 623 | | eliccre 45518 |
. . . . . . . . . . . . 13
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
| 624 | 621, 622,
614, 623 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
| 625 | 75 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
| 626 | 624, 625 | resubcld 11691 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
| 627 | 226 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
| 628 | 627 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
| 629 | 621 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
| 630 | 622 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
| 631 | | iccgelb 13443 |
. . . . . . . . . . . . . 14
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ≤ 𝑥) |
| 632 | 629, 630,
614, 631 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ≤ 𝑥) |
| 633 | 621, 624,
625, 632 | lesub1dd 11879 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇) − 𝑇) ≤ (𝑥 − 𝑇)) |
| 634 | 628, 633 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ≤ (𝑥 − 𝑇)) |
| 635 | | iccleub 13442 |
. . . . . . . . . . . . . 14
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ≤ ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 636 | 629, 630,
614, 635 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ≤ ((𝑄‘(𝑖 + 1)) + 𝑇)) |
| 637 | 624, 622,
625, 636 | lesub1dd 11879 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
| 638 | 245 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
| 639 | 637, 638 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ (𝑄‘(𝑖 + 1))) |
| 640 | 619, 620,
626, 634, 639 | eliccd 45517 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 641 | 618, 640 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐺‘(𝑥 − 𝑇)) ∈ ℂ) |
| 642 | 617, 641,
588 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐻‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
| 643 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇))) = (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))) |
| 644 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 − 𝑇) = (𝑥 − 𝑇)) |
| 645 | 644 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝐺‘(𝑦 − 𝑇)) = (𝐺‘(𝑥 − 𝑇))) |
| 646 | 645 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) ∧ 𝑦 = 𝑥) → (𝐺‘(𝑦 − 𝑇)) = (𝐺‘(𝑥 − 𝑇))) |
| 647 | 643, 646,
614, 641 | fvmptd 7023 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) = (𝐺‘(𝑥 − 𝑇))) |
| 648 | 642, 647 | eqtr4d 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐻‘𝑥) = ((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥)) |
| 649 | 648 | itgeq2dv 25817 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))(𝐻‘𝑥) d𝑥 = ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) d𝑥) |
| 650 | 74 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈
ℝ+) |
| 651 | 645 | cbvmptv 5255 |
. . . . . . 7
⊢ (𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇))) = (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑥 − 𝑇))) |
| 652 | 42, 45, 381, 582, 650, 651 | itgiccshift 45995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇))((𝑦 ∈ (((𝑄‘𝑖) + 𝑇)[,]((𝑄‘(𝑖 + 1)) + 𝑇)) ↦ (𝐺‘(𝑦 − 𝑇)))‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥) |
| 653 | 613, 649,
652 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐻‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥) |
| 654 | 132 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom 𝐹 = ℝ) |
| 655 | 59, 654 | sseqtrrd 4021 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
| 656 | 42, 45, 135, 53, 655, 55, 54, 309 | itgioocnicc 45992 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ∈ 𝐿1 ∧
∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥)) |
| 657 | 656 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐺‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 658 | 611, 653,
657 | 3eqtrd 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 659 | 658 | sumeq2dv 15738 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥) |
| 660 | 90, 306, 659 | 3eqtrrd 2782 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥) |
| 661 | 14, 63, 660 | 3eqtrrd 2782 |
1
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |