MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   GIF version

Theorem colhp 27712
Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colhp.k 𝐾 = (hlG‘𝐺)
Assertion
Ref Expression
colhp (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏   𝐶,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 461 . . 3 ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵))
21a1i 11 . 2 (𝜑 → ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
3 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
4 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
5 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
6 hpgid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
8 hpgid.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
98adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
10 colopp.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐵𝑃)
12 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
13 eqid 2736 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
14 eqid 2736 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
15 colopp.p . . . . . . . 8 (𝜑𝐶𝐷)
163, 5, 4, 6, 8, 15tglnpt 27491 . . . . . . 7 (𝜑𝐶𝑃)
17 eqid 2736 . . . . . . 7 ((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶)
18 hpgid.a . . . . . . 7 (𝜑𝐴𝑃)
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 27603 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2019adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2115adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐷)
2216adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝑃)
2318adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
24 nelne2 3042 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2515, 24sylan 580 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2625necomd 2999 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝐶)
273, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 27600 . . . . . . . . . 10 (𝜑𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴))
283, 13, 4, 6, 19, 16, 18, 27tgbtwncom 27430 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
2928adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
303, 4, 5, 7, 23, 22, 20, 26, 29btwnlng3 27563 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶))
31 colopp.1 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
323, 5, 4, 6, 18, 10, 16, 31colrot1 27501 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
333, 5, 4, 6, 10, 16, 18, 32colcom 27500 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
3433adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
353, 4, 5, 7, 20, 23, 22, 11, 30, 34coltr 27589 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
363, 5, 4, 7, 22, 11, 20, 35colrot1 27501 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
373, 4, 5, 7, 9, 11, 12, 20, 21, 36colopp 27711 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)))
38 simpr 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
393, 13, 4, 5, 14, 6, 16, 17, 18mirmir 27604 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
4039adantr 481 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
416adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG)
428adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
4315adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶𝐷)
44 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
453, 13, 4, 5, 14, 41, 17, 42, 43, 44mirln 27618 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷)
4640, 45eqeltrrd 2839 . . . . . . . 8 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴𝐷)
4746stoic1a 1774 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
48 simpr 485 . . . . . . . . . 10 ((𝜑𝑡 = 𝐶) → 𝑡 = 𝐶)
4948eleq1d 2822 . . . . . . . . 9 ((𝜑𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
5015, 49, 28rspcedvd 3583 . . . . . . . 8 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5150adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5238, 47, 51jca31 515 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
533, 13, 4, 12, 23, 20islnopp 27681 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))))
5452, 53mpbird 256 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴))
553, 4, 5, 12, 7, 9, 23, 11, 20, 54lnopp2hpgb 27705 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
56 colhp.k . . . . . . 7 𝐾 = (hlG‘𝐺)
5710ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝑃)
5818ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝑃)
5916ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝑃)
606ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐺 ∈ TarskiG)
6115ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝐷)
62 simprr 771 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐵𝐷)
63 nelne2 3042 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐶𝐵)
6463necomd 2999 . . . . . . . . 9 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐵𝐶)
6561, 62, 64syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝐶)
6626adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝐶)
67 simprl 769 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
683, 13, 4, 5, 14, 60, 17, 56, 59, 57, 58, 58, 65, 66, 67mirhl2 27623 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵(𝐾𝐶)𝐴)
693, 4, 56, 57, 58, 59, 60, 68hlcomd 27546 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴(𝐾𝐶)𝐵)
70693adantr3 1171 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾𝐶)𝐵)
7118ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴𝑃)
7210ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐵𝑃)
7319ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
746ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐺 ∈ TarskiG)
7516ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶𝑃)
76 simpr 485 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴(𝐾𝐶)𝐵)
7728ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
783, 4, 56, 71, 72, 73, 74, 75, 76, 77btwnhl 27556 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
793, 4, 56, 71, 72, 75, 74, 5, 76hlln 27549 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶))
8079adantr 481 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴 ∈ (𝐵𝐿𝐶))
817ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐺 ∈ TarskiG)
8211ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝑃)
8375adantr 481 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝑃)
8423ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝑃)
8576adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴(𝐾𝐶)𝐵)
863, 4, 56, 84, 82, 83, 81, 85hlne2 27548 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐶)
879ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 ∈ ran 𝐿)
88 simpr 485 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐷)
8915ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝐷)
903, 4, 5, 81, 82, 83, 86, 86, 87, 88, 89tglinethru 27578 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 = (𝐵𝐿𝐶))
9180, 90eleqtrrd 2841 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝐷)
9238ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
9391, 92pm2.65da 815 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ 𝐵𝐷)
9447adantr 481 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
9578, 93, 943jca 1128 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))
9670, 95impbida 799 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾𝐶)𝐵))
9737, 55, 963bitr3d 308 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴(𝐾𝐶)𝐵))
9897pm5.32da 579 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
99 simprr 771 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1006adantr 481 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG)
1018adantr 481 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿)
10218adantr 481 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴𝑃)
10310adantr 481 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑃)
104 simpr 485 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1053, 4, 5, 12, 100, 101, 102, 103, 104hpgne1 27703 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴𝐷)
106105, 104jca 512 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵))
10799, 106impbida 799 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
1082, 98, 1073bitr2rd 307 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907   class class class wbr 5105  {copab 5167  ran crn 5634  cfv 6496  (class class class)co 7357  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  hlGchlg 27542  pInvGcmir 27594  hpGchpg 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkgld 27394  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-hlg 27543  df-mir 27595  df-rag 27636  df-perpg 27638  df-hpg 27700
This theorem is referenced by:  hphl  27713
  Copyright terms: Public domain W3C validator