MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   GIF version

Theorem colhp 26118
Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colhp.k 𝐾 = (hlG‘𝐺)
Assertion
Ref Expression
colhp (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏   𝐶,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 454 . . 3 ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵))
21a1i 11 . 2 (𝜑 → ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
3 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
4 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
5 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
6 hpgid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
8 hpgid.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
98adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
10 colopp.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐵𝑃)
12 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
13 eqid 2778 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
14 eqid 2778 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
15 colopp.p . . . . . . . 8 (𝜑𝐶𝐷)
163, 5, 4, 6, 8, 15tglnpt 25900 . . . . . . 7 (𝜑𝐶𝑃)
17 eqid 2778 . . . . . . 7 ((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶)
18 hpgid.a . . . . . . 7 (𝜑𝐴𝑃)
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 26012 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2019adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2115adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐷)
2216adantr 474 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝑃)
2318adantr 474 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
24 nelne2 3068 . . . . . . . . . . 11 ((𝐶𝐷 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2515, 24sylan 575 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2625necomd 3024 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝐶)
2726neneqd 2974 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴 = 𝐶)
28 simpr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
293, 13, 4, 5, 14, 6, 16, 17, 18mirmir 26013 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
3029adantr 474 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
316adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG)
328adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
3315adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶𝐷)
34 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
353, 13, 4, 5, 14, 31, 17, 32, 33, 34mirln 26027 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷)
3630, 35eqeltrrd 2860 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴𝐷)
3736stoic1a 1816 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
38 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 = 𝐶) → 𝑡 = 𝐶)
39 eqidd 2779 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 = 𝐶) → (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) = (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
4038, 39eleq12d 2853 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
413, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 26009 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴))
423, 13, 4, 6, 19, 16, 18, 41tgbtwncom 25839 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
4315, 40, 42rspcedvd 3518 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
4443adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
4528, 37, 44jca31 510 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐴𝐷) → ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
463, 13, 4, 12, 23, 20islnopp 26087 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))))
4745, 46mpbird 249 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴))
483, 13, 4, 12, 5, 9, 7, 23, 20, 47oppne3 26091 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴 ≠ (((pInvG‘𝐺)‘𝐶)‘𝐴))
4942adantr 474 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
503, 4, 5, 7, 23, 20, 22, 48, 49btwnlng1 25970 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5150orcd 862 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐴𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐴 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
523, 5, 4, 7, 23, 20, 22, 51colcom 25909 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐿𝐴) ∨ (((pInvG‘𝐺)‘𝐶)‘𝐴) = 𝐴))
533, 5, 4, 7, 20, 23, 22, 52colrot1 25910 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
5453orcomd 860 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 = 𝐶 ∨ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶)))
5554ord 853 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → (¬ 𝐴 = 𝐶 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶)))
5627, 55mpd 15 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶))
57 colopp.1 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
583, 5, 4, 6, 18, 10, 16, 57colrot1 25910 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
593, 5, 4, 6, 10, 16, 18, 58colcom 25909 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
6059adantr 474 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
613, 4, 5, 7, 20, 23, 22, 11, 56, 60coltr 25998 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
623, 5, 4, 7, 22, 11, 20, 61colrot1 25910 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
633, 4, 5, 7, 9, 11, 12, 20, 21, 62colopp 26117 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)))
643, 4, 5, 12, 7, 9, 23, 11, 20, 47lnopp2hpgb 26111 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
65 colhp.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
66 simpll 757 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝜑)
6766, 10syl 17 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝑃)
6866, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝑃)
6966, 16syl 17 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝑃)
7066, 6syl 17 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐺 ∈ TarskiG)
7166, 15syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝐷)
72 simprr 763 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐵𝐷)
73 nelne2 3068 . . . . . . . . . . . 12 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐶𝐵)
7473necomd 3024 . . . . . . . . . . 11 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐵𝐶)
7571, 72, 74syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝐶)
7626adantr 474 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝐶)
77 simprl 761 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
783, 13, 4, 5, 14, 70, 17, 65, 69, 67, 68, 68, 75, 76, 77mirhl2 26032 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵(𝐾𝐶)𝐴)
793, 4, 65, 67, 68, 69, 70, 78hlcomd 25955 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴(𝐾𝐶)𝐵)
8028adantr 474 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐴𝐷)
8179, 80jca 507 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷))
82813adantr3 1173 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷))
8382simpld 490 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾𝐶)𝐵)
8423adantr 474 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴𝑃)
8511adantr 474 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐵𝑃)
8620adantr 474 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
877adantr 474 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐺 ∈ TarskiG)
8816ad2antrr 716 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶𝑃)
89 simpr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴(𝐾𝐶)𝐵)
9042ad2antrr 716 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
913, 4, 65, 84, 85, 86, 87, 88, 89, 90btwnhl 25965 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
923, 4, 65, 84, 85, 88, 87, 5, 89hlln 25958 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶))
9392adantr 474 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴 ∈ (𝐵𝐿𝐶))
9487adantr 474 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐺 ∈ TarskiG)
9585adantr 474 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝑃)
9688adantr 474 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝑃)
9784adantr 474 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝑃)
9889adantr 474 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴(𝐾𝐶)𝐵)
993, 4, 65, 97, 95, 96, 94, 98hlne2 25957 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐶)
1009ad2antrr 716 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 ∈ ran 𝐿)
101 simpr 479 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐷)
10215ad3antrrr 720 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝐷)
1033, 4, 5, 94, 95, 96, 99, 99, 100, 101, 102tglinethru 25987 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 = (𝐵𝐿𝐶))
10493, 103eleqtrrd 2862 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝐷)
10528ad2antrr 716 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
106104, 105pm2.65da 807 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ 𝐵𝐷)
10737adantr 474 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
10891, 106, 1073jca 1119 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))
10983, 108impbida 791 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾𝐶)𝐵))
11063, 64, 1093bitr3d 301 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴(𝐾𝐶)𝐵))
111110pm5.32da 574 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
112 simpr 479 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
113112adantrl 706 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1146adantr 474 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG)
1158adantr 474 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿)
11618adantr 474 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴𝑃)
11710adantr 474 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑃)
1183, 4, 5, 12, 114, 115, 116, 117, 112hpgne1 26109 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴𝐷)
119118, 112jca 507 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵))
120113, 119impbida 791 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
1212, 111, 1203bitr2rd 300 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091  cdif 3789   class class class wbr 4886  {copab 4948  ran crn 5356  cfv 6135  (class class class)co 6922  Basecbs 16255  distcds 16347  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788  hlGchlg 25951  pInvGcmir 26003  hpGchpg 26105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-concat 13661  df-s1 13686  df-s2 13999  df-s3 14000  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkgld 25803  df-trkg 25804  df-cgrg 25862  df-leg 25934  df-hlg 25952  df-mir 26004  df-rag 26045  df-perpg 26047  df-hpg 26106
This theorem is referenced by:  hphl  26119  trgcopy  26152
  Copyright terms: Public domain W3C validator