MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   GIF version

Theorem colhp 28793
Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colhp.k 𝐾 = (hlG‘𝐺)
Assertion
Ref Expression
colhp (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏   𝐶,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 460 . . 3 ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵))
21a1i 11 . 2 (𝜑 → ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
3 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
4 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
5 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
6 hpgid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
8 hpgid.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
98adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
10 colopp.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐵𝑃)
12 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
13 eqid 2735 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
14 eqid 2735 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
15 colopp.p . . . . . . . 8 (𝜑𝐶𝐷)
163, 5, 4, 6, 8, 15tglnpt 28572 . . . . . . 7 (𝜑𝐶𝑃)
17 eqid 2735 . . . . . . 7 ((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶)
18 hpgid.a . . . . . . 7 (𝜑𝐴𝑃)
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 28684 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2019adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2115adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐷)
2216adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝑃)
2318adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
24 nelne2 3038 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2515, 24sylan 580 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2625necomd 2994 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝐶)
273, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 28681 . . . . . . . . . 10 (𝜑𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴))
283, 13, 4, 6, 19, 16, 18, 27tgbtwncom 28511 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
2928adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
303, 4, 5, 7, 23, 22, 20, 26, 29btwnlng3 28644 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶))
31 colopp.1 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
323, 5, 4, 6, 18, 10, 16, 31colrot1 28582 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
333, 5, 4, 6, 10, 16, 18, 32colcom 28581 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
3433adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
353, 4, 5, 7, 20, 23, 22, 11, 30, 34coltr 28670 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
363, 5, 4, 7, 22, 11, 20, 35colrot1 28582 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
373, 4, 5, 7, 9, 11, 12, 20, 21, 36colopp 28792 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)))
38 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
393, 13, 4, 5, 14, 6, 16, 17, 18mirmir 28685 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
4039adantr 480 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
416adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG)
428adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
4315adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶𝐷)
44 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
453, 13, 4, 5, 14, 41, 17, 42, 43, 44mirln 28699 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷)
4640, 45eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴𝐷)
4746stoic1a 1769 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
48 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 = 𝐶) → 𝑡 = 𝐶)
4948eleq1d 2824 . . . . . . . . 9 ((𝜑𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
5015, 49, 28rspcedvd 3624 . . . . . . . 8 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5150adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5238, 47, 51jca31 514 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
533, 13, 4, 12, 23, 20islnopp 28762 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))))
5452, 53mpbird 257 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴))
553, 4, 5, 12, 7, 9, 23, 11, 20, 54lnopp2hpgb 28786 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
56 colhp.k . . . . . . 7 𝐾 = (hlG‘𝐺)
5710ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝑃)
5818ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝑃)
5916ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝑃)
606ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐺 ∈ TarskiG)
6115ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝐷)
62 simprr 773 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐵𝐷)
63 nelne2 3038 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐶𝐵)
6463necomd 2994 . . . . . . . . 9 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐵𝐶)
6561, 62, 64syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝐶)
6626adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝐶)
67 simprl 771 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
683, 13, 4, 5, 14, 60, 17, 56, 59, 57, 58, 58, 65, 66, 67mirhl2 28704 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵(𝐾𝐶)𝐴)
693, 4, 56, 57, 58, 59, 60, 68hlcomd 28627 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴(𝐾𝐶)𝐵)
70693adantr3 1170 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾𝐶)𝐵)
7118ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴𝑃)
7210ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐵𝑃)
7319ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
746ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐺 ∈ TarskiG)
7516ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶𝑃)
76 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴(𝐾𝐶)𝐵)
7728ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
783, 4, 56, 71, 72, 73, 74, 75, 76, 77btwnhl 28637 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
793, 4, 56, 71, 72, 75, 74, 5, 76hlln 28630 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶))
8079adantr 480 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴 ∈ (𝐵𝐿𝐶))
817ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐺 ∈ TarskiG)
8211ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝑃)
8375adantr 480 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝑃)
8423ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝑃)
8576adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴(𝐾𝐶)𝐵)
863, 4, 56, 84, 82, 83, 81, 85hlne2 28629 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐶)
879ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 ∈ ran 𝐿)
88 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐷)
8915ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝐷)
903, 4, 5, 81, 82, 83, 86, 86, 87, 88, 89tglinethru 28659 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 = (𝐵𝐿𝐶))
9180, 90eleqtrrd 2842 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝐷)
9238ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
9391, 92pm2.65da 817 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ 𝐵𝐷)
9447adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
9578, 93, 943jca 1127 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))
9670, 95impbida 801 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾𝐶)𝐵))
9737, 55, 963bitr3d 309 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴(𝐾𝐶)𝐵))
9897pm5.32da 579 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
99 simprr 773 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1006adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG)
1018adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿)
10218adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴𝑃)
10310adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑃)
104 simpr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1053, 4, 5, 12, 100, 101, 102, 103, 104hpgne1 28784 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴𝐷)
106105, 104jca 511 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵))
10799, 106impbida 801 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
1082, 98, 1073bitr2rd 308 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cdif 3960   class class class wbr 5148  {copab 5210  ran crn 5690  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  hlGchlg 28623  pInvGcmir 28675  hpGchpg 28780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkgld 28475  df-trkg 28476  df-cgrg 28534  df-leg 28606  df-hlg 28624  df-mir 28676  df-rag 28717  df-perpg 28719  df-hpg 28781
This theorem is referenced by:  hphl  28794
  Copyright terms: Public domain W3C validator