MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   GIF version

Theorem colhp 28681
Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colhp.k 𝐾 = (hlG‘𝐺)
Assertion
Ref Expression
colhp (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏   𝐶,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 460 . . 3 ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵))
21a1i 11 . 2 (𝜑 → ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
3 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
4 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
5 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
6 hpgid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
8 hpgid.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
98adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
10 colopp.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐵𝑃)
12 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
13 eqid 2734 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
14 eqid 2734 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
15 colopp.p . . . . . . . 8 (𝜑𝐶𝐷)
163, 5, 4, 6, 8, 15tglnpt 28460 . . . . . . 7 (𝜑𝐶𝑃)
17 eqid 2734 . . . . . . 7 ((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶)
18 hpgid.a . . . . . . 7 (𝜑𝐴𝑃)
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 28572 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2019adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2115adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐷)
2216adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝑃)
2318adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
24 nelne2 3029 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2515, 24sylan 580 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2625necomd 2986 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝐶)
273, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 28569 . . . . . . . . . 10 (𝜑𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴))
283, 13, 4, 6, 19, 16, 18, 27tgbtwncom 28399 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
2928adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
303, 4, 5, 7, 23, 22, 20, 26, 29btwnlng3 28532 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶))
31 colopp.1 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
323, 5, 4, 6, 18, 10, 16, 31colrot1 28470 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
333, 5, 4, 6, 10, 16, 18, 32colcom 28469 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
3433adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
353, 4, 5, 7, 20, 23, 22, 11, 30, 34coltr 28558 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
363, 5, 4, 7, 22, 11, 20, 35colrot1 28470 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
373, 4, 5, 7, 9, 11, 12, 20, 21, 36colopp 28680 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)))
38 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
393, 13, 4, 5, 14, 6, 16, 17, 18mirmir 28573 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
4039adantr 480 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
416adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG)
428adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
4315adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶𝐷)
44 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
453, 13, 4, 5, 14, 41, 17, 42, 43, 44mirln 28587 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷)
4640, 45eqeltrrd 2834 . . . . . . . 8 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴𝐷)
4746stoic1a 1771 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
48 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 = 𝐶) → 𝑡 = 𝐶)
4948eleq1d 2818 . . . . . . . . 9 ((𝜑𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
5015, 49, 28rspcedvd 3601 . . . . . . . 8 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5150adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5238, 47, 51jca31 514 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
533, 13, 4, 12, 23, 20islnopp 28650 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))))
5452, 53mpbird 257 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴))
553, 4, 5, 12, 7, 9, 23, 11, 20, 54lnopp2hpgb 28674 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
56 colhp.k . . . . . . 7 𝐾 = (hlG‘𝐺)
5710ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝑃)
5818ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝑃)
5916ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝑃)
606ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐺 ∈ TarskiG)
6115ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝐷)
62 simprr 772 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐵𝐷)
63 nelne2 3029 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐶𝐵)
6463necomd 2986 . . . . . . . . 9 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐵𝐶)
6561, 62, 64syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝐶)
6626adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝐶)
67 simprl 770 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
683, 13, 4, 5, 14, 60, 17, 56, 59, 57, 58, 58, 65, 66, 67mirhl2 28592 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵(𝐾𝐶)𝐴)
693, 4, 56, 57, 58, 59, 60, 68hlcomd 28515 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴(𝐾𝐶)𝐵)
70693adantr3 1171 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾𝐶)𝐵)
7118ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴𝑃)
7210ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐵𝑃)
7319ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
746ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐺 ∈ TarskiG)
7516ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶𝑃)
76 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴(𝐾𝐶)𝐵)
7728ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
783, 4, 56, 71, 72, 73, 74, 75, 76, 77btwnhl 28525 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
793, 4, 56, 71, 72, 75, 74, 5, 76hlln 28518 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶))
8079adantr 480 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴 ∈ (𝐵𝐿𝐶))
817ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐺 ∈ TarskiG)
8211ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝑃)
8375adantr 480 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝑃)
8423ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝑃)
8576adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴(𝐾𝐶)𝐵)
863, 4, 56, 84, 82, 83, 81, 85hlne2 28517 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐶)
879ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 ∈ ran 𝐿)
88 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐷)
8915ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝐷)
903, 4, 5, 81, 82, 83, 86, 86, 87, 88, 89tglinethru 28547 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 = (𝐵𝐿𝐶))
9180, 90eleqtrrd 2836 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝐷)
9238ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
9391, 92pm2.65da 816 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ 𝐵𝐷)
9447adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
9578, 93, 943jca 1128 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))
9670, 95impbida 800 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾𝐶)𝐵))
9737, 55, 963bitr3d 309 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴(𝐾𝐶)𝐵))
9897pm5.32da 579 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
99 simprr 772 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1006adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG)
1018adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿)
10218adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴𝑃)
10310adantr 480 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑃)
104 simpr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1053, 4, 5, 12, 100, 101, 102, 103, 104hpgne1 28672 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴𝐷)
106105, 104jca 511 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵))
10799, 106impbida 800 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
1082, 98, 1073bitr2rd 308 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cdif 3921   class class class wbr 5116  {copab 5178  ran crn 5652  cfv 6527  (class class class)co 7399  Basecbs 17213  distcds 17265  TarskiGcstrkg 28338  Itvcitv 28344  LineGclng 28345  hlGchlg 28511  pInvGcmir 28563  hpGchpg 28668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-oadd 8478  df-er 8713  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13514  df-fzo 13661  df-hash 14337  df-word 14520  df-concat 14576  df-s1 14601  df-s2 14854  df-s3 14855  df-trkgc 28359  df-trkgb 28360  df-trkgcb 28361  df-trkgld 28363  df-trkg 28364  df-cgrg 28422  df-leg 28494  df-hlg 28512  df-mir 28564  df-rag 28605  df-perpg 28607  df-hpg 28669
This theorem is referenced by:  hphl  28682
  Copyright terms: Public domain W3C validator