Proof of Theorem colhp
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ancom 460 | . . 3
⊢ ((𝐴(𝐾‘𝐶)𝐵 ∧ ¬ 𝐴 ∈ 𝐷) ↔ (¬ 𝐴 ∈ 𝐷 ∧ 𝐴(𝐾‘𝐶)𝐵)) | 
| 2 | 1 | a1i 11 | . 2
⊢ (𝜑 → ((𝐴(𝐾‘𝐶)𝐵 ∧ ¬ 𝐴 ∈ 𝐷) ↔ (¬ 𝐴 ∈ 𝐷 ∧ 𝐴(𝐾‘𝐶)𝐵))) | 
| 3 |  | hpgid.p | . . . . 5
⊢ 𝑃 = (Base‘𝐺) | 
| 4 |  | hpgid.i | . . . . 5
⊢ 𝐼 = (Itv‘𝐺) | 
| 5 |  | hpgid.l | . . . . 5
⊢ 𝐿 = (LineG‘𝐺) | 
| 6 |  | hpgid.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 7 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐺 ∈ TarskiG) | 
| 8 |  | hpgid.d | . . . . . 6
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| 9 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐷 ∈ ran 𝐿) | 
| 10 |  | colopp.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 11 | 10 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐵 ∈ 𝑃) | 
| 12 |  | hpgid.o | . . . . 5
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| 13 |  | eqid 2736 | . . . . . . 7
⊢
(dist‘𝐺) =
(dist‘𝐺) | 
| 14 |  | eqid 2736 | . . . . . . 7
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) | 
| 15 |  | colopp.p | . . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐷) | 
| 16 | 3, 5, 4, 6, 8, 15 | tglnpt 28558 | . . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| 17 |  | eqid 2736 | . . . . . . 7
⊢
((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶) | 
| 18 |  | hpgid.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 19 | 3, 13, 4, 5, 14, 6,
16, 17, 18 | mircl 28670 | . . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃) | 
| 20 | 19 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃) | 
| 21 | 15 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐶 ∈ 𝐷) | 
| 22 | 16 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐶 ∈ 𝑃) | 
| 23 | 18 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐴 ∈ 𝑃) | 
| 24 |  | nelne2 3039 | . . . . . . . . . 10
⊢ ((𝐶 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐶 ≠ 𝐴) | 
| 25 | 15, 24 | sylan 580 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐶 ≠ 𝐴) | 
| 26 | 25 | necomd 2995 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐴 ≠ 𝐶) | 
| 27 | 3, 13, 4, 5, 14, 6,
16, 17, 18 | mirbtwn 28667 | . . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴)) | 
| 28 | 3, 13, 4, 6, 19, 16, 18, 27 | tgbtwncom 28497 | . . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 29 | 28 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 30 | 3, 4, 5, 7, 23, 22, 20, 26, 29 | btwnlng3 28630 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶)) | 
| 31 |  | colopp.1 | . . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | 
| 32 | 3, 5, 4, 6, 18, 10, 16, 31 | colrot1 28568 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | 
| 33 | 3, 5, 4, 6, 10, 16, 18, 32 | colcom 28567 | . . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵)) | 
| 34 | 33 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵)) | 
| 35 | 3, 4, 5, 7, 20, 23, 22, 11, 30, 34 | coltr 28656 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵)) | 
| 36 | 3, 5, 4, 7, 22, 11, 20, 35 | colrot1 28568 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 37 | 3, 4, 5, 7, 9, 11,
12, 20, 21, 36 | colopp 28778 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))) | 
| 38 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ¬ 𝐴 ∈ 𝐷) | 
| 39 | 3, 13, 4, 5, 14, 6,
16, 17, 18 | mirmir 28671 | . . . . . . . . . 10
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴) | 
| 40 | 39 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴) | 
| 41 | 6 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG) | 
| 42 | 8 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿) | 
| 43 | 15 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶 ∈ 𝐷) | 
| 44 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) | 
| 45 | 3, 13, 4, 5, 14, 41, 17, 42, 43, 44 | mirln 28685 | . . . . . . . . 9
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷) | 
| 46 | 40, 45 | eqeltrrd 2841 | . . . . . . . 8
⊢ ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴 ∈ 𝐷) | 
| 47 | 46 | stoic1a 1771 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) | 
| 48 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) | 
| 49 | 48 | eleq1d 2825 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))) | 
| 50 | 15, 49, 28 | rspcedvd 3623 | . . . . . . . 8
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 51 | 50 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 52 | 38, 47, 51 | jca31 514 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))) | 
| 53 | 3, 13, 4, 12, 23, 20 | islnopp 28748 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))) | 
| 54 | 52, 53 | mpbird 257 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴)) | 
| 55 | 3, 4, 5, 12, 7, 9,
23, 11, 20, 54 | lnopp2hpgb 28772 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) | 
| 56 |  | colhp.k | . . . . . . 7
⊢ 𝐾 = (hlG‘𝐺) | 
| 57 | 10 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐵 ∈ 𝑃) | 
| 58 | 18 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐴 ∈ 𝑃) | 
| 59 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐶 ∈ 𝑃) | 
| 60 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐺 ∈ TarskiG) | 
| 61 | 15 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐶 ∈ 𝐷) | 
| 62 |  | simprr 772 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → ¬ 𝐵 ∈ 𝐷) | 
| 63 |  | nelne2 3039 | . . . . . . . . . 10
⊢ ((𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) → 𝐶 ≠ 𝐵) | 
| 64 | 63 | necomd 2995 | . . . . . . . . 9
⊢ ((𝐶 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) → 𝐵 ≠ 𝐶) | 
| 65 | 61, 62, 64 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐵 ≠ 𝐶) | 
| 66 | 26 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐴 ≠ 𝐶) | 
| 67 |  | simprl 770 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 68 | 3, 13, 4, 5, 14, 60, 17, 56, 59, 57, 58, 58, 65, 66, 67 | mirhl2 28690 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐵(𝐾‘𝐶)𝐴) | 
| 69 | 3, 4, 56, 57, 58, 59, 60, 68 | hlcomd 28613 | . . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷)) → 𝐴(𝐾‘𝐶)𝐵) | 
| 70 | 69 | 3adantr3 1171 | . . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾‘𝐶)𝐵) | 
| 71 | 18 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐴 ∈ 𝑃) | 
| 72 | 10 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐵 ∈ 𝑃) | 
| 73 | 19 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃) | 
| 74 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐺 ∈ TarskiG) | 
| 75 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐶 ∈ 𝑃) | 
| 76 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐴(𝐾‘𝐶)𝐵) | 
| 77 | 28 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 78 | 3, 4, 56, 71, 72, 73, 74, 75, 76, 77 | btwnhl 28623 | . . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))) | 
| 79 | 3, 4, 56, 71, 72, 75, 74, 5, 76 | hlln 28616 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶)) | 
| 80 | 79 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐴 ∈ (𝐵𝐿𝐶)) | 
| 81 | 7 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐺 ∈ TarskiG) | 
| 82 | 11 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐵 ∈ 𝑃) | 
| 83 | 75 | adantr 480 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐶 ∈ 𝑃) | 
| 84 | 23 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐴 ∈ 𝑃) | 
| 85 | 76 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐴(𝐾‘𝐶)𝐵) | 
| 86 | 3, 4, 56, 84, 82, 83, 81, 85 | hlne2 28615 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐵 ≠ 𝐶) | 
| 87 | 9 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐷 ∈ ran 𝐿) | 
| 88 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐵 ∈ 𝐷) | 
| 89 | 15 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐶 ∈ 𝐷) | 
| 90 | 3, 4, 5, 81, 82, 83, 86, 86, 87, 88, 89 | tglinethru 28645 | . . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐷 = (𝐵𝐿𝐶)) | 
| 91 | 80, 90 | eleqtrrd 2843 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → 𝐴 ∈ 𝐷) | 
| 92 | 38 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) ∧ 𝐵 ∈ 𝐷) → ¬ 𝐴 ∈ 𝐷) | 
| 93 | 91, 92 | pm2.65da 816 | . . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → ¬ 𝐵 ∈ 𝐷) | 
| 94 | 47 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) | 
| 95 | 78, 93, 94 | 3jca 1128 | . . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) ∧ 𝐴(𝐾‘𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) | 
| 96 | 70, 95 | impbida 800 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵 ∈ 𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾‘𝐶)𝐵)) | 
| 97 | 37, 55, 96 | 3bitr3d 309 | . . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴(𝐾‘𝐶)𝐵)) | 
| 98 | 97 | pm5.32da 579 | . 2
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴 ∈ 𝐷 ∧ 𝐴(𝐾‘𝐶)𝐵))) | 
| 99 |  | simprr 772 | . . 3
⊢ ((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | 
| 100 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG) | 
| 101 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿) | 
| 102 | 18 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴 ∈ 𝑃) | 
| 103 | 10 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵 ∈ 𝑃) | 
| 104 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | 
| 105 | 3, 4, 5, 12, 100, 101, 102, 103, 104 | hpgne1 28770 | . . . 4
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴 ∈ 𝐷) | 
| 106 | 105, 104 | jca 511 | . . 3
⊢ ((𝜑 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴 ∈ 𝐷 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) | 
| 107 | 99, 106 | impbida 800 | . 2
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ 𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) | 
| 108 | 2, 98, 107 | 3bitr2rd 308 | 1
⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾‘𝐶)𝐵 ∧ ¬ 𝐴 ∈ 𝐷))) |