Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   GIF version

Theorem colhp 26562
 Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colhp.k 𝐾 = (hlG‘𝐺)
Assertion
Ref Expression
colhp (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏   𝐶,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 464 . . 3 ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵))
21a1i 11 . 2 (𝜑 → ((𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
3 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
4 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
5 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
6 hpgid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
8 hpgid.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
98adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
10 colopp.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐵𝑃)
12 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
13 eqid 2824 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
14 eqid 2824 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
15 colopp.p . . . . . . . 8 (𝜑𝐶𝐷)
163, 5, 4, 6, 8, 15tglnpt 26341 . . . . . . 7 (𝜑𝐶𝑃)
17 eqid 2824 . . . . . . 7 ((pInvG‘𝐺)‘𝐶) = ((pInvG‘𝐺)‘𝐶)
18 hpgid.a . . . . . . 7 (𝜑𝐴𝑃)
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 26453 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2019adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
2115adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐷)
2216adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝑃)
2318adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
24 nelne2 3111 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2515, 24sylan 583 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶𝐴)
2625necomd 3069 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝐶)
273, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 26450 . . . . . . . . . 10 (𝜑𝐶 ∈ ((((pInvG‘𝐺)‘𝐶)‘𝐴)𝐼𝐴))
283, 13, 4, 6, 19, 16, 18, 27tgbtwncom 26280 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
2928adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
303, 4, 5, 7, 23, 22, 20, 26, 29btwnlng3 26413 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐴𝐿𝐶))
31 colopp.1 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
323, 5, 4, 6, 18, 10, 16, 31colrot1 26351 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
333, 5, 4, 6, 10, 16, 18, 32colcom 26350 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
3433adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
353, 4, 5, 7, 20, 23, 22, 11, 30, 34coltr 26439 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
363, 5, 4, 7, 22, 11, 20, 35colrot1 26351 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 ∈ (𝐵𝐿(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∨ 𝐵 = (((pInvG‘𝐺)‘𝐶)‘𝐴)))
373, 4, 5, 7, 9, 11, 12, 20, 21, 36colopp 26561 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)))
38 simpr 488 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
393, 13, 4, 5, 14, 6, 16, 17, 18mirmir 26454 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
4039adantr 484 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) = 𝐴)
416adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐺 ∈ TarskiG)
428adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
4315adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐶𝐷)
44 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
453, 13, 4, 5, 14, 41, 17, 42, 43, 44mirln 26468 . . . . . . . . 9 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → (((pInvG‘𝐺)‘𝐶)‘(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∈ 𝐷)
4640, 45eqeltrrd 2917 . . . . . . . 8 ((𝜑 ∧ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) → 𝐴𝐷)
4746stoic1a 1774 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
48 simpr 488 . . . . . . . . . 10 ((𝜑𝑡 = 𝐶) → 𝑡 = 𝐶)
4948eleq1d 2900 . . . . . . . . 9 ((𝜑𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ↔ 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
5015, 49, 28rspcedvd 3612 . . . . . . . 8 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5150adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
5238, 47, 51jca31 518 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴))))
533, 13, 4, 12, 23, 20islnopp 26531 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ ((¬ 𝐴𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))))
5452, 53mpbird 260 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴))
553, 4, 5, 12, 7, 9, 23, 11, 20, 54lnopp2hpgb 26555 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐵𝑂(((pInvG‘𝐺)‘𝐶)‘𝐴) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
56 colhp.k . . . . . . 7 𝐾 = (hlG‘𝐺)
5710ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝑃)
5818ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝑃)
5916ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝑃)
606ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐺 ∈ TarskiG)
6115ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶𝐷)
62 simprr 772 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → ¬ 𝐵𝐷)
63 nelne2 3111 . . . . . . . . . 10 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐶𝐵)
6463necomd 3069 . . . . . . . . 9 ((𝐶𝐷 ∧ ¬ 𝐵𝐷) → 𝐵𝐶)
6561, 62, 64syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵𝐶)
6626adantr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴𝐶)
67 simprl 770 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
683, 13, 4, 5, 14, 60, 17, 56, 59, 57, 58, 58, 65, 66, 67mirhl2 26473 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐵(𝐾𝐶)𝐴)
693, 4, 56, 57, 58, 59, 60, 68hlcomd 26396 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷)) → 𝐴(𝐾𝐶)𝐵)
70693adantr3 1168 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)) → 𝐴(𝐾𝐶)𝐵)
7118ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴𝑃)
7210ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐵𝑃)
7319ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝑃)
746ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐺 ∈ TarskiG)
7516ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶𝑃)
76 simpr 488 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴(𝐾𝐶)𝐵)
7728ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
783, 4, 56, 71, 72, 73, 74, 75, 76, 77btwnhl 26406 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)))
793, 4, 56, 71, 72, 75, 74, 5, 76hlln 26399 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → 𝐴 ∈ (𝐵𝐿𝐶))
8079adantr 484 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴 ∈ (𝐵𝐿𝐶))
817ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐺 ∈ TarskiG)
8211ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝑃)
8375adantr 484 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝑃)
8423ad2antrr 725 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝑃)
8576adantr 484 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴(𝐾𝐶)𝐵)
863, 4, 56, 84, 82, 83, 81, 85hlne2 26398 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐶)
879ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 ∈ ran 𝐿)
88 simpr 488 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐵𝐷)
8915ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐶𝐷)
903, 4, 5, 81, 82, 83, 86, 86, 87, 88, 89tglinethru 26428 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐷 = (𝐵𝐿𝐶))
9180, 90eleqtrrd 2919 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → 𝐴𝐷)
9238ad2antrr 725 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
9391, 92pm2.65da 816 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ 𝐵𝐷)
9447adantr 484 . . . . . 6 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷)
9578, 93, 943jca 1125 . . . . 5 (((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝐴(𝐾𝐶)𝐵) → (𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷))
9670, 95impbida 800 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 ∈ (𝐵𝐼(((pInvG‘𝐺)‘𝐶)‘𝐴)) ∧ ¬ 𝐵𝐷 ∧ ¬ (((pInvG‘𝐺)‘𝐶)‘𝐴) ∈ 𝐷) ↔ 𝐴(𝐾𝐶)𝐵))
9737, 55, 963bitr3d 312 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴(𝐾𝐶)𝐵))
9897pm5.32da 582 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ (¬ 𝐴𝐷𝐴(𝐾𝐶)𝐵)))
99 simprr 772 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵)) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1006adantr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐺 ∈ TarskiG)
1018adantr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐷 ∈ ran 𝐿)
10218adantr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴𝑃)
10310adantr 484 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑃)
104 simpr 488 . . . . 5 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
1053, 4, 5, 12, 100, 101, 102, 103, 104hpgne1 26553 . . . 4 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ¬ 𝐴𝐷)
106105, 104jca 515 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → (¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵))
10799, 106impbida 800 . 2 (𝜑 → ((¬ 𝐴𝐷𝐴((hpG‘𝐺)‘𝐷)𝐵) ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵))
1082, 98, 1073bitr2rd 311 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134   ∖ cdif 3916   class class class wbr 5053  {copab 5115  ran crn 5544  ‘cfv 6344  (class class class)co 7146  Basecbs 16481  distcds 16572  TarskiGcstrkg 26222  Itvcitv 26228  LineGclng 26229  hlGchlg 26392  pInvGcmir 26444  hpGchpg 26549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9323  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-xnn0 11963  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-concat 13921  df-s1 13948  df-s2 14208  df-s3 14209  df-trkgc 26240  df-trkgb 26241  df-trkgcb 26242  df-trkgld 26244  df-trkg 26245  df-cgrg 26303  df-leg 26375  df-hlg 26393  df-mir 26445  df-rag 26486  df-perpg 26488  df-hpg 26550 This theorem is referenced by:  hphl  26563
 Copyright terms: Public domain W3C validator