MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Visualization version   GIF version

Theorem fclsopni 22623
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem fclsopni
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . . . . . . 8 𝐽 = 𝐽
21fclsfil 22618 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
3 fclstopon 22620 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘ 𝐽) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
42, 3mpbird 260 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘ 𝐽))
5 fclsopn 22622 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
64, 2, 5syl2anc 587 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
76ibi 270 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
8 eleq2 2881 . . . . . 6 (𝑜 = 𝑈 → (𝐴𝑜𝐴𝑈))
9 ineq1 4134 . . . . . . . 8 (𝑜 = 𝑈 → (𝑜𝑠) = (𝑈𝑠))
109neeq1d 3049 . . . . . . 7 (𝑜 = 𝑈 → ((𝑜𝑠) ≠ ∅ ↔ (𝑈𝑠) ≠ ∅))
1110ralbidv 3165 . . . . . 6 (𝑜 = 𝑈 → (∀𝑠𝐹 (𝑜𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑈𝑠) ≠ ∅))
128, 11imbi12d 348 . . . . 5 (𝑜 = 𝑈 → ((𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
1312rspccv 3571 . . . 4 (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
147, 13simpl2im 507 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
15 ineq2 4136 . . . . 5 (𝑠 = 𝑆 → (𝑈𝑠) = (𝑈𝑆))
1615neeq1d 3049 . . . 4 (𝑠 = 𝑆 → ((𝑈𝑠) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1716rspccv 3571 . . 3 (∀𝑠𝐹 (𝑈𝑠) ≠ ∅ → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))
1814, 17syl8 76 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))))
19183imp2 1346 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  cin 3883  c0 4246   cuni 4803  cfv 6328  (class class class)co 7139  TopOnctopon 21518  Filcfil 22453   fClus cfcls 22544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-fbas 20091  df-top 21502  df-topon 21519  df-cld 21627  df-ntr 21628  df-cls 21629  df-fil 22454  df-fcls 22549
This theorem is referenced by:  fclsneii  22625  supnfcls  22628  flimfnfcls  22636  cfilfcls  23881
  Copyright terms: Public domain W3C validator