![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclsopni | Structured version Visualization version GIF version |
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fclsopni | ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | fclsfil 24039 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | fclstopon 24041 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | |
4 | 2, 3 | mpbird 257 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | fclsopn 24043 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
6 | 4, 2, 5 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
7 | 6 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
8 | eleq2 2833 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈)) | |
9 | ineq1 4234 | . . . . . . . 8 ⊢ (𝑜 = 𝑈 → (𝑜 ∩ 𝑠) = (𝑈 ∩ 𝑠)) | |
10 | 9 | neeq1d 3006 | . . . . . . 7 ⊢ (𝑜 = 𝑈 → ((𝑜 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑠) ≠ ∅)) |
11 | 10 | ralbidv 3184 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅)) |
12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑜 = 𝑈 → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
13 | 12 | rspccv 3632 | . . . 4 ⊢ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
14 | 7, 13 | simpl2im 503 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
15 | ineq2 4235 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑈 ∩ 𝑠) = (𝑈 ∩ 𝑆)) | |
16 | 15 | neeq1d 3006 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑈 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
17 | 16 | rspccv 3632 | . . 3 ⊢ (∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅ → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)) |
18 | 14, 17 | syl8 76 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)))) |
19 | 18 | 3imp2 1349 | 1 ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∩ cin 3975 ∅c0 4352 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 Filcfil 23874 fClus cfcls 23965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-top 22921 df-topon 22938 df-cld 23048 df-ntr 23049 df-cls 23050 df-fil 23875 df-fcls 23970 |
This theorem is referenced by: fclsneii 24046 supnfcls 24049 flimfnfcls 24057 cfilfcls 25327 |
Copyright terms: Public domain | W3C validator |