| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclsopni | Structured version Visualization version GIF version | ||
| Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclsopni | ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | fclsfil 23923 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 3 | fclstopon 23925 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | |
| 4 | 2, 3 | mpbird 257 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 5 | fclsopn 23927 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
| 6 | 4, 2, 5 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 7 | 6 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 8 | eleq2 2820 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈)) | |
| 9 | ineq1 4163 | . . . . . . . 8 ⊢ (𝑜 = 𝑈 → (𝑜 ∩ 𝑠) = (𝑈 ∩ 𝑠)) | |
| 10 | 9 | neeq1d 2987 | . . . . . . 7 ⊢ (𝑜 = 𝑈 → ((𝑜 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑠) ≠ ∅)) |
| 11 | 10 | ralbidv 3155 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅)) |
| 12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑜 = 𝑈 → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 13 | 12 | rspccv 3574 | . . . 4 ⊢ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 14 | 7, 13 | simpl2im 503 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 15 | ineq2 4164 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑈 ∩ 𝑠) = (𝑈 ∩ 𝑆)) | |
| 16 | 15 | neeq1d 2987 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑈 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
| 17 | 16 | rspccv 3574 | . . 3 ⊢ (∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅ → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)) |
| 18 | 14, 17 | syl8 76 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)))) |
| 19 | 18 | 3imp2 1350 | 1 ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3901 ∅c0 4283 ∪ cuni 4859 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22823 Filcfil 23758 fClus cfcls 23849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 21286 df-top 22807 df-topon 22824 df-cld 22932 df-ntr 22933 df-cls 22934 df-fil 23759 df-fcls 23854 |
| This theorem is referenced by: fclsneii 23930 supnfcls 23933 flimfnfcls 23941 cfilfcls 25199 |
| Copyright terms: Public domain | W3C validator |