![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclsopni | Structured version Visualization version GIF version |
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fclsopni | ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2779 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | fclsfil 22322 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | fclstopon 22324 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | |
4 | 2, 3 | mpbird 249 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | fclsopn 22326 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
6 | 4, 2, 5 | syl2anc 576 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
7 | 6 | ibi 259 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
8 | eleq2 2855 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈)) | |
9 | ineq1 4069 | . . . . . . . 8 ⊢ (𝑜 = 𝑈 → (𝑜 ∩ 𝑠) = (𝑈 ∩ 𝑠)) | |
10 | 9 | neeq1d 3027 | . . . . . . 7 ⊢ (𝑜 = 𝑈 → ((𝑜 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑠) ≠ ∅)) |
11 | 10 | ralbidv 3148 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅)) |
12 | 8, 11 | imbi12d 337 | . . . . 5 ⊢ (𝑜 = 𝑈 → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
13 | 12 | rspccv 3533 | . . . 4 ⊢ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
14 | 7, 13 | simpl2im 496 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
15 | ineq2 4071 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑈 ∩ 𝑠) = (𝑈 ∩ 𝑆)) | |
16 | 15 | neeq1d 3027 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑈 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
17 | 16 | rspccv 3533 | . . 3 ⊢ (∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅ → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)) |
18 | 14, 17 | syl8 76 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)))) |
19 | 18 | 3imp2 1329 | 1 ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2968 ∀wral 3089 ∩ cin 3829 ∅c0 4179 ∪ cuni 4712 ‘cfv 6188 (class class class)co 6976 TopOnctopon 21222 Filcfil 22157 fClus cfcls 22248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-fbas 20244 df-top 21206 df-topon 21223 df-cld 21331 df-ntr 21332 df-cls 21333 df-fil 22158 df-fcls 22253 |
This theorem is referenced by: fclsneii 22329 supnfcls 22332 flimfnfcls 22340 cfilfcls 23580 |
Copyright terms: Public domain | W3C validator |