MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Visualization version   GIF version

Theorem fclsopni 23074
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem fclsopni
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
21fclsfil 23069 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
3 fclstopon 23071 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘ 𝐽) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
42, 3mpbird 256 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘ 𝐽))
5 fclsopn 23073 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
64, 2, 5syl2anc 583 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
76ibi 266 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
8 eleq2 2827 . . . . . 6 (𝑜 = 𝑈 → (𝐴𝑜𝐴𝑈))
9 ineq1 4136 . . . . . . . 8 (𝑜 = 𝑈 → (𝑜𝑠) = (𝑈𝑠))
109neeq1d 3002 . . . . . . 7 (𝑜 = 𝑈 → ((𝑜𝑠) ≠ ∅ ↔ (𝑈𝑠) ≠ ∅))
1110ralbidv 3120 . . . . . 6 (𝑜 = 𝑈 → (∀𝑠𝐹 (𝑜𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑈𝑠) ≠ ∅))
128, 11imbi12d 344 . . . . 5 (𝑜 = 𝑈 → ((𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
1312rspccv 3549 . . . 4 (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
147, 13simpl2im 503 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
15 ineq2 4137 . . . . 5 (𝑠 = 𝑆 → (𝑈𝑠) = (𝑈𝑆))
1615neeq1d 3002 . . . 4 (𝑠 = 𝑆 → ((𝑈𝑠) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1716rspccv 3549 . . 3 (∀𝑠𝐹 (𝑈𝑠) ≠ ∅ → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))
1814, 17syl8 76 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))))
19183imp2 1347 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cin 3882  c0 4253   cuni 4836  cfv 6418  (class class class)co 7255  TopOnctopon 21967  Filcfil 22904   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-top 21951  df-topon 21968  df-cld 22078  df-ntr 22079  df-cls 22080  df-fil 22905  df-fcls 23000
This theorem is referenced by:  fclsneii  23076  supnfcls  23079  flimfnfcls  23087  cfilfcls  24343
  Copyright terms: Public domain W3C validator