Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fclsopni | Structured version Visualization version GIF version |
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fclsopni | ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | fclsfil 23069 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | fclstopon 23071 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | |
4 | 2, 3 | mpbird 256 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | fclsopn 23073 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
6 | 4, 2, 5 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
7 | 6 | ibi 266 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
8 | eleq2 2827 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈)) | |
9 | ineq1 4136 | . . . . . . . 8 ⊢ (𝑜 = 𝑈 → (𝑜 ∩ 𝑠) = (𝑈 ∩ 𝑠)) | |
10 | 9 | neeq1d 3002 | . . . . . . 7 ⊢ (𝑜 = 𝑈 → ((𝑜 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑠) ≠ ∅)) |
11 | 10 | ralbidv 3120 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅)) |
12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑜 = 𝑈 → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
13 | 12 | rspccv 3549 | . . . 4 ⊢ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
14 | 7, 13 | simpl2im 503 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
15 | ineq2 4137 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑈 ∩ 𝑠) = (𝑈 ∩ 𝑆)) | |
16 | 15 | neeq1d 3002 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑈 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
17 | 16 | rspccv 3549 | . . 3 ⊢ (∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅ → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)) |
18 | 14, 17 | syl8 76 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)))) |
19 | 18 | 3imp2 1347 | 1 ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∩ cin 3882 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 TopOnctopon 21967 Filcfil 22904 fClus cfcls 22995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-fbas 20507 df-top 21951 df-topon 21968 df-cld 22078 df-ntr 22079 df-cls 22080 df-fil 22905 df-fcls 23000 |
This theorem is referenced by: fclsneii 23076 supnfcls 23079 flimfnfcls 23087 cfilfcls 24343 |
Copyright terms: Public domain | W3C validator |