| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclsopni | Structured version Visualization version GIF version | ||
| Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclsopni | ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | fclsfil 23948 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 3 | fclstopon 23950 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | |
| 4 | 2, 3 | mpbird 257 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 5 | fclsopn 23952 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
| 6 | 4, 2, 5 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 7 | 6 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 8 | eleq2 2823 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈)) | |
| 9 | ineq1 4188 | . . . . . . . 8 ⊢ (𝑜 = 𝑈 → (𝑜 ∩ 𝑠) = (𝑈 ∩ 𝑠)) | |
| 10 | 9 | neeq1d 2991 | . . . . . . 7 ⊢ (𝑜 = 𝑈 → ((𝑜 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑠) ≠ ∅)) |
| 11 | 10 | ralbidv 3163 | . . . . . 6 ⊢ (𝑜 = 𝑈 → (∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅)) |
| 12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑜 = 𝑈 → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 13 | 12 | rspccv 3598 | . . . 4 ⊢ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 14 | 7, 13 | simpl2im 503 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅))) |
| 15 | ineq2 4189 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑈 ∩ 𝑠) = (𝑈 ∩ 𝑆)) | |
| 16 | 15 | neeq1d 2991 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑈 ∩ 𝑠) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
| 17 | 16 | rspccv 3598 | . . 3 ⊢ (∀𝑠 ∈ 𝐹 (𝑈 ∩ 𝑠) ≠ ∅ → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)) |
| 18 | 14, 17 | syl8 76 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → (𝑆 ∈ 𝐹 → (𝑈 ∩ 𝑆) ≠ ∅)))) |
| 19 | 18 | 3imp2 1350 | 1 ⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∩ cin 3925 ∅c0 4308 ∪ cuni 4883 ‘cfv 6531 (class class class)co 7405 TopOnctopon 22848 Filcfil 23783 fClus cfcls 23874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-fbas 21312 df-top 22832 df-topon 22849 df-cld 22957 df-ntr 22958 df-cls 22959 df-fil 23784 df-fcls 23879 |
| This theorem is referenced by: fclsneii 23955 supnfcls 23958 flimfnfcls 23966 cfilfcls 25226 |
| Copyright terms: Public domain | W3C validator |