MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Visualization version   GIF version

Theorem fclsopni 23918
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem fclsopni
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
21fclsfil 23913 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
3 fclstopon 23915 . . . . . . 7 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘ 𝐽) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
42, 3mpbird 257 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘ 𝐽))
5 fclsopn 23917 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
64, 2, 5syl2anc 584 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
76ibi 267 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 𝐽 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
8 eleq2 2817 . . . . . 6 (𝑜 = 𝑈 → (𝐴𝑜𝐴𝑈))
9 ineq1 4166 . . . . . . . 8 (𝑜 = 𝑈 → (𝑜𝑠) = (𝑈𝑠))
109neeq1d 2984 . . . . . . 7 (𝑜 = 𝑈 → ((𝑜𝑠) ≠ ∅ ↔ (𝑈𝑠) ≠ ∅))
1110ralbidv 3152 . . . . . 6 (𝑜 = 𝑈 → (∀𝑠𝐹 (𝑜𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑈𝑠) ≠ ∅))
128, 11imbi12d 344 . . . . 5 (𝑜 = 𝑈 → ((𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
1312rspccv 3576 . . . 4 (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
147, 13simpl2im 503 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → ∀𝑠𝐹 (𝑈𝑠) ≠ ∅)))
15 ineq2 4167 . . . . 5 (𝑠 = 𝑆 → (𝑈𝑠) = (𝑈𝑆))
1615neeq1d 2984 . . . 4 (𝑠 = 𝑆 → ((𝑈𝑠) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1716rspccv 3576 . . 3 (∀𝑠𝐹 (𝑈𝑠) ≠ ∅ → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))
1814, 17syl8 76 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑈𝐽 → (𝐴𝑈 → (𝑆𝐹 → (𝑈𝑆) ≠ ∅))))
19183imp2 1350 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈𝐽𝐴𝑈𝑆𝐹)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3904  c0 4286   cuni 4861  cfv 6486  (class class class)co 7353  TopOnctopon 22813  Filcfil 23748   fClus cfcls 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fbas 21276  df-top 22797  df-topon 22814  df-cld 22922  df-ntr 22923  df-cls 22924  df-fil 23749  df-fcls 23844
This theorem is referenced by:  fclsneii  23920  supnfcls  23923  flimfnfcls  23931  cfilfcls  25190
  Copyright terms: Public domain W3C validator