HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Visualization version   GIF version

Theorem sumdmdlem2 32400
Description: Lemma for sumdmdi 32401. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sumdmdlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8 𝐴C
2 sumdmdi.2 . . . . . . . 8 𝐵C
31, 2chjcli 31438 . . . . . . 7 (𝐴 𝐵) ∈ C
43cheli 31213 . . . . . 6 (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ ℋ)
5 spansnsh 31542 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
62chshii 31208 . . . . . . . . . . . . 13 𝐵S
7 shsub2 31306 . . . . . . . . . . . . 13 (((span‘{𝑦}) ∈ S𝐵S ) → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
9 spansnid 31544 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
108, 9sseldd 3959 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
1110ad2antrl 728 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
12 elin 3942 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ↔ (𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)))
13 df-ne 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
14 spansna 32331 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
1513, 14sylan2br 595 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (span‘{𝑦}) ∈ HAtoms)
16 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → (𝑥 𝐵) = ((span‘{𝑦}) ∨ 𝐵))
1716ineq1d 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
1816ineq1d 4194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
1918oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
2017, 19sseq12d 3992 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2120rspcv 3597 . . . . . . . . . . . . . . . . . . 19 ((span‘{𝑦}) ∈ HAtoms → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2215, 21syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
23 spansnj 31628 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = (𝐵 (span‘{𝑦})))
24 spansnch 31541 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
25 chjcom 31487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C ∧ (span‘{𝑦}) ∈ C ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2723, 26eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
282, 27mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2928ineq1d 4194 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
3028ineq1d 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
3130oveq1d 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
3229, 31sseq12d 3992 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3422, 33sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3534com12 32 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3635expdimp 452 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → (¬ 𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
37 ssid 3981 . . . . . . . . . . . . . . . 16 𝐵𝐵
38 sneq 4611 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → {𝑦} = {0})
3938fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (span‘{𝑦}) = (span‘{0}))
40 spansn0 31522 . . . . . . . . . . . . . . . . . . . . . 22 (span‘{0}) = 0
4139, 40eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (span‘{𝑦}) = 0)
4241oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = (𝐵 + 0))
436shs0i 31430 . . . . . . . . . . . . . . . . . . . 20 (𝐵 + 0) = 𝐵
4442, 43eqtrdi 2786 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = 𝐵)
4544ineq1d 4194 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐴 𝐵)))
46 inss1 4212 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∩ (𝐴 𝐵)) ⊆ 𝐵
472, 1chub2i 31451 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐴 𝐵)
4837, 47ssini 4215 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ (𝐵 ∩ (𝐴 𝐵))
4946, 48eqssi 3975 . . . . . . . . . . . . . . . . . 18 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
5045, 49eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = 𝐵)
5144ineq1d 4194 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
5251oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
532, 1chincli 31441 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝐴) ∈ C
5453, 2chjcomi 31449 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝐴) ∨ 𝐵) = (𝐵 (𝐵𝐴))
552, 1chabs1i 31499 . . . . . . . . . . . . . . . . . . 19 (𝐵 (𝐵𝐴)) = 𝐵
5654, 55eqtri 2758 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) ∨ 𝐵) = 𝐵
5752, 56eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
5850, 57sseq12d 3992 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ 𝐵𝐵))
5937, 58mpbiri 258 . . . . . . . . . . . . . . 15 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6036, 59pm2.61d2 181 . . . . . . . . . . . . . 14 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6160adantrr 717 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
621, 2sumdmdlem 32399 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
6362oveq1d 7420 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
6463, 56eqtrdi 2786 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
651chshii 31208 . . . . . . . . . . . . . . . 16 𝐴S
666, 65shsub2i 31354 . . . . . . . . . . . . . . 15 𝐵 ⊆ (𝐴 + 𝐵)
6764, 66eqsstrdi 4003 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6867adantl 481 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6961, 68sstrd 3969 . . . . . . . . . . . 12 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (𝐴 + 𝐵))
7069sseld 3957 . . . . . . . . . . 11 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7112, 70biimtrrid 243 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7211, 71mpand 695 . . . . . . . . 9 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7372exp32 420 . . . . . . . 8 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (¬ 𝑦 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
7473com34 91 . . . . . . 7 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → (¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
75 pm2.18 128 . . . . . . 7 ((¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵))
7674, 75syl8 76 . . . . . 6 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
774, 76syl5 34 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
7877pm2.43d 53 . . . 4 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7978ssrdv 3964 . . 3 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 𝐵) ⊆ (𝐴 + 𝐵))
801, 2chsleji 31439 . . 3 (𝐴 + 𝐵) ⊆ (𝐴 𝐵)
8179, 80jctil 519 . 2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
82 eqss 3974 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
8381, 82sylibr 234 1 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  cin 3925  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  chba 30900  0c0v 30905   S csh 30909   C cch 30910   + cph 30912  spancspn 30913   chj 30914  0c0h 30916  HAtomscat 30946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066  ax-hcompl 31183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-lm 23167  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cfil 25207  df-cau 25208  df-cmet 25209  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-dip 30682  df-ssp 30703  df-ph 30794  df-cbn 30844  df-hnorm 30949  df-hba 30950  df-hvsub 30952  df-hlim 30953  df-hcau 30954  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234  df-shs 31289  df-span 31290  df-chj 31291  df-pjh 31376  df-cv 32260  df-at 32319
This theorem is referenced by:  sumdmdi  32401  dmdbr4ati  32402  dmdbr5ati  32403
  Copyright terms: Public domain W3C validator