HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Visualization version   GIF version

Theorem sumdmdlem2 32346
Description: Lemma for sumdmdi 32347. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sumdmdlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8 𝐴C
2 sumdmdi.2 . . . . . . . 8 𝐵C
31, 2chjcli 31384 . . . . . . 7 (𝐴 𝐵) ∈ C
43cheli 31159 . . . . . 6 (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ ℋ)
5 spansnsh 31488 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
62chshii 31154 . . . . . . . . . . . . 13 𝐵S
7 shsub2 31252 . . . . . . . . . . . . 13 (((span‘{𝑦}) ∈ S𝐵S ) → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
85, 6, 7sylancl 584 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
9 spansnid 31490 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
108, 9sseldd 3979 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
1110ad2antrl 726 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
12 elin 3962 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ↔ (𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)))
13 df-ne 2931 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
14 spansna 32277 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
1513, 14sylan2br 593 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (span‘{𝑦}) ∈ HAtoms)
16 oveq1 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → (𝑥 𝐵) = ((span‘{𝑦}) ∨ 𝐵))
1716ineq1d 4209 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
1816ineq1d 4209 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
1918oveq1d 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
2017, 19sseq12d 4012 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2120rspcv 3603 . . . . . . . . . . . . . . . . . . 19 ((span‘{𝑦}) ∈ HAtoms → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2215, 21syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
23 spansnj 31574 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = (𝐵 (span‘{𝑦})))
24 spansnch 31487 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
25 chjcom 31433 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C ∧ (span‘{𝑦}) ∈ C ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2624, 25sylan2 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2723, 26eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
282, 27mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2928ineq1d 4209 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
3028ineq1d 4209 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
3130oveq1d 7428 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
3229, 31sseq12d 4012 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3332adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3422, 33sylibrd 258 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3534com12 32 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3635expdimp 451 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → (¬ 𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
37 ssid 4001 . . . . . . . . . . . . . . . 16 𝐵𝐵
38 sneq 4633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → {𝑦} = {0})
3938fveq2d 6894 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (span‘{𝑦}) = (span‘{0}))
40 spansn0 31468 . . . . . . . . . . . . . . . . . . . . . 22 (span‘{0}) = 0
4139, 40eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (span‘{𝑦}) = 0)
4241oveq2d 7429 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = (𝐵 + 0))
436shs0i 31376 . . . . . . . . . . . . . . . . . . . 20 (𝐵 + 0) = 𝐵
4442, 43eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = 𝐵)
4544ineq1d 4209 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐴 𝐵)))
46 inss1 4227 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∩ (𝐴 𝐵)) ⊆ 𝐵
472, 1chub2i 31397 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐴 𝐵)
4837, 47ssini 4230 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ (𝐵 ∩ (𝐴 𝐵))
4946, 48eqssi 3995 . . . . . . . . . . . . . . . . . 18 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
5045, 49eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = 𝐵)
5144ineq1d 4209 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
5251oveq1d 7428 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
532, 1chincli 31387 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝐴) ∈ C
5453, 2chjcomi 31395 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝐴) ∨ 𝐵) = (𝐵 (𝐵𝐴))
552, 1chabs1i 31445 . . . . . . . . . . . . . . . . . . 19 (𝐵 (𝐵𝐴)) = 𝐵
5654, 55eqtri 2754 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) ∨ 𝐵) = 𝐵
5752, 56eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
5850, 57sseq12d 4012 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ 𝐵𝐵))
5937, 58mpbiri 257 . . . . . . . . . . . . . . 15 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6036, 59pm2.61d2 181 . . . . . . . . . . . . . 14 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6160adantrr 715 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
621, 2sumdmdlem 32345 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
6362oveq1d 7428 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
6463, 56eqtrdi 2782 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
651chshii 31154 . . . . . . . . . . . . . . . 16 𝐴S
666, 65shsub2i 31300 . . . . . . . . . . . . . . 15 𝐵 ⊆ (𝐴 + 𝐵)
6764, 66eqsstrdi 4033 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6867adantl 480 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6961, 68sstrd 3989 . . . . . . . . . . . 12 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (𝐴 + 𝐵))
7069sseld 3977 . . . . . . . . . . 11 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7112, 70biimtrrid 242 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7211, 71mpand 693 . . . . . . . . 9 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7372exp32 419 . . . . . . . 8 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (¬ 𝑦 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
7473com34 91 . . . . . . 7 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → (¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
75 pm2.18 128 . . . . . . 7 ((¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵))
7674, 75syl8 76 . . . . . 6 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
774, 76syl5 34 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
7877pm2.43d 53 . . . 4 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7978ssrdv 3984 . . 3 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 𝐵) ⊆ (𝐴 + 𝐵))
801, 2chsleji 31385 . . 3 (𝐴 + 𝐵) ⊆ (𝐴 𝐵)
8179, 80jctil 518 . 2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
82 eqss 3994 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
8381, 82sylibr 233 1 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  cin 3945  wss 3946  {csn 4623  cfv 6543  (class class class)co 7413  chba 30846  0c0v 30851   S csh 30855   C cch 30856   + cph 30858  spancspn 30859   chj 30860  0c0h 30862  HAtomscat 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-cc 10466  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-fi 9444  df-sup 9475  df-inf 9476  df-oi 9543  df-card 9972  df-acn 9975  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-q 12976  df-rp 13020  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13673  df-fl 13803  df-seq 14013  df-exp 14073  df-hash 14340  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-clim 15482  df-rlim 15483  df-sum 15683  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17429  df-topn 17430  df-0g 17448  df-gsum 17449  df-topgen 17450  df-pt 17451  df-prds 17454  df-xrs 17509  df-qtop 17514  df-imas 17515  df-xps 17517  df-mre 17591  df-mrc 17592  df-acs 17594  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19773  df-psmet 21328  df-xmet 21329  df-met 21330  df-bl 21331  df-mopn 21332  df-fbas 21333  df-fg 21334  df-cnfld 21337  df-top 22881  df-topon 22898  df-topsp 22920  df-bases 22934  df-cld 23008  df-ntr 23009  df-cls 23010  df-nei 23087  df-cn 23216  df-cnp 23217  df-lm 23218  df-haus 23304  df-tx 23551  df-hmeo 23744  df-fil 23835  df-fm 23927  df-flim 23928  df-flf 23929  df-xms 24311  df-ms 24312  df-tms 24313  df-cfil 25268  df-cau 25269  df-cmet 25270  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-shs 31235  df-span 31236  df-chj 31237  df-pjh 31322  df-cv 32206  df-at 32265
This theorem is referenced by:  sumdmdi  32347  dmdbr4ati  32348  dmdbr5ati  32349
  Copyright terms: Public domain W3C validator