HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Visualization version   GIF version

Theorem sumdmdlem2 32451
Description: Lemma for sumdmdi 32452. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sumdmdlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8 𝐴C
2 sumdmdi.2 . . . . . . . 8 𝐵C
31, 2chjcli 31489 . . . . . . 7 (𝐴 𝐵) ∈ C
43cheli 31264 . . . . . 6 (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ ℋ)
5 spansnsh 31593 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
62chshii 31259 . . . . . . . . . . . . 13 𝐵S
7 shsub2 31357 . . . . . . . . . . . . 13 (((span‘{𝑦}) ∈ S𝐵S ) → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
85, 6, 7sylancl 585 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
9 spansnid 31595 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
108, 9sseldd 4009 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
1110ad2antrl 727 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
12 elin 3992 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ↔ (𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)))
13 df-ne 2947 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
14 spansna 32382 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
1513, 14sylan2br 594 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (span‘{𝑦}) ∈ HAtoms)
16 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → (𝑥 𝐵) = ((span‘{𝑦}) ∨ 𝐵))
1716ineq1d 4240 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
1816ineq1d 4240 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
1918oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
2017, 19sseq12d 4042 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2120rspcv 3631 . . . . . . . . . . . . . . . . . . 19 ((span‘{𝑦}) ∈ HAtoms → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2215, 21syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
23 spansnj 31679 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = (𝐵 (span‘{𝑦})))
24 spansnch 31592 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
25 chjcom 31538 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C ∧ (span‘{𝑦}) ∈ C ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2624, 25sylan2 592 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2723, 26eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
282, 27mpan 689 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2928ineq1d 4240 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
3028ineq1d 4240 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
3130oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
3229, 31sseq12d 4042 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3422, 33sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3534com12 32 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3635expdimp 452 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → (¬ 𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
37 ssid 4031 . . . . . . . . . . . . . . . 16 𝐵𝐵
38 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → {𝑦} = {0})
3938fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (span‘{𝑦}) = (span‘{0}))
40 spansn0 31573 . . . . . . . . . . . . . . . . . . . . . 22 (span‘{0}) = 0
4139, 40eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (span‘{𝑦}) = 0)
4241oveq2d 7464 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = (𝐵 + 0))
436shs0i 31481 . . . . . . . . . . . . . . . . . . . 20 (𝐵 + 0) = 𝐵
4442, 43eqtrdi 2796 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = 𝐵)
4544ineq1d 4240 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐴 𝐵)))
46 inss1 4258 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∩ (𝐴 𝐵)) ⊆ 𝐵
472, 1chub2i 31502 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐴 𝐵)
4837, 47ssini 4261 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ (𝐵 ∩ (𝐴 𝐵))
4946, 48eqssi 4025 . . . . . . . . . . . . . . . . . 18 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
5045, 49eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = 𝐵)
5144ineq1d 4240 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
5251oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
532, 1chincli 31492 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝐴) ∈ C
5453, 2chjcomi 31500 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝐴) ∨ 𝐵) = (𝐵 (𝐵𝐴))
552, 1chabs1i 31550 . . . . . . . . . . . . . . . . . . 19 (𝐵 (𝐵𝐴)) = 𝐵
5654, 55eqtri 2768 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) ∨ 𝐵) = 𝐵
5752, 56eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
5850, 57sseq12d 4042 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ 𝐵𝐵))
5937, 58mpbiri 258 . . . . . . . . . . . . . . 15 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6036, 59pm2.61d2 181 . . . . . . . . . . . . . 14 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6160adantrr 716 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
621, 2sumdmdlem 32450 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
6362oveq1d 7463 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
6463, 56eqtrdi 2796 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
651chshii 31259 . . . . . . . . . . . . . . . 16 𝐴S
666, 65shsub2i 31405 . . . . . . . . . . . . . . 15 𝐵 ⊆ (𝐴 + 𝐵)
6764, 66eqsstrdi 4063 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6867adantl 481 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6961, 68sstrd 4019 . . . . . . . . . . . 12 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (𝐴 + 𝐵))
7069sseld 4007 . . . . . . . . . . 11 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7112, 70biimtrrid 243 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7211, 71mpand 694 . . . . . . . . 9 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7372exp32 420 . . . . . . . 8 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (¬ 𝑦 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
7473com34 91 . . . . . . 7 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → (¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
75 pm2.18 128 . . . . . . 7 ((¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵))
7674, 75syl8 76 . . . . . 6 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
774, 76syl5 34 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
7877pm2.43d 53 . . . 4 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7978ssrdv 4014 . . 3 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 𝐵) ⊆ (𝐴 + 𝐵))
801, 2chsleji 31490 . . 3 (𝐴 + 𝐵) ⊆ (𝐴 𝐵)
8179, 80jctil 519 . 2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
82 eqss 4024 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
8381, 82sylibr 234 1 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  chba 30951  0c0v 30956   S csh 30960   C cch 30961   + cph 30963  spancspn 30964   chj 30965  0c0h 30967  HAtomscat 30997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-span 31341  df-chj 31342  df-pjh 31427  df-cv 32311  df-at 32370
This theorem is referenced by:  sumdmdi  32452  dmdbr4ati  32453  dmdbr5ati  32454
  Copyright terms: Public domain W3C validator