HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Visualization version   GIF version

Theorem sumdmdlem2 32321
Description: Lemma for sumdmdi 32322. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sumdmdlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8 𝐴C
2 sumdmdi.2 . . . . . . . 8 𝐵C
31, 2chjcli 31359 . . . . . . 7 (𝐴 𝐵) ∈ C
43cheli 31134 . . . . . 6 (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ ℋ)
5 spansnsh 31463 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
62chshii 31129 . . . . . . . . . . . . 13 𝐵S
7 shsub2 31227 . . . . . . . . . . . . 13 (((span‘{𝑦}) ∈ S𝐵S ) → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
9 spansnid 31465 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
108, 9sseldd 3944 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
1110ad2antrl 728 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
12 elin 3927 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ↔ (𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)))
13 df-ne 2926 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
14 spansna 32252 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
1513, 14sylan2br 595 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (span‘{𝑦}) ∈ HAtoms)
16 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → (𝑥 𝐵) = ((span‘{𝑦}) ∨ 𝐵))
1716ineq1d 4178 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
1816ineq1d 4178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
1918oveq1d 7384 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
2017, 19sseq12d 3977 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2120rspcv 3581 . . . . . . . . . . . . . . . . . . 19 ((span‘{𝑦}) ∈ HAtoms → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2215, 21syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
23 spansnj 31549 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = (𝐵 (span‘{𝑦})))
24 spansnch 31462 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
25 chjcom 31408 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C ∧ (span‘{𝑦}) ∈ C ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2723, 26eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
282, 27mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2928ineq1d 4178 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
3028ineq1d 4178 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
3130oveq1d 7384 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
3229, 31sseq12d 3977 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3422, 33sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3534com12 32 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3635expdimp 452 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → (¬ 𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
37 ssid 3966 . . . . . . . . . . . . . . . 16 𝐵𝐵
38 sneq 4595 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → {𝑦} = {0})
3938fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (span‘{𝑦}) = (span‘{0}))
40 spansn0 31443 . . . . . . . . . . . . . . . . . . . . . 22 (span‘{0}) = 0
4139, 40eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (span‘{𝑦}) = 0)
4241oveq2d 7385 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = (𝐵 + 0))
436shs0i 31351 . . . . . . . . . . . . . . . . . . . 20 (𝐵 + 0) = 𝐵
4442, 43eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = 𝐵)
4544ineq1d 4178 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐴 𝐵)))
46 inss1 4196 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∩ (𝐴 𝐵)) ⊆ 𝐵
472, 1chub2i 31372 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐴 𝐵)
4837, 47ssini 4199 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ (𝐵 ∩ (𝐴 𝐵))
4946, 48eqssi 3960 . . . . . . . . . . . . . . . . . 18 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
5045, 49eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = 𝐵)
5144ineq1d 4178 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
5251oveq1d 7384 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
532, 1chincli 31362 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝐴) ∈ C
5453, 2chjcomi 31370 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝐴) ∨ 𝐵) = (𝐵 (𝐵𝐴))
552, 1chabs1i 31420 . . . . . . . . . . . . . . . . . . 19 (𝐵 (𝐵𝐴)) = 𝐵
5654, 55eqtri 2752 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) ∨ 𝐵) = 𝐵
5752, 56eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
5850, 57sseq12d 3977 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ 𝐵𝐵))
5937, 58mpbiri 258 . . . . . . . . . . . . . . 15 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6036, 59pm2.61d2 181 . . . . . . . . . . . . . 14 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6160adantrr 717 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
621, 2sumdmdlem 32320 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
6362oveq1d 7384 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
6463, 56eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
651chshii 31129 . . . . . . . . . . . . . . . 16 𝐴S
666, 65shsub2i 31275 . . . . . . . . . . . . . . 15 𝐵 ⊆ (𝐴 + 𝐵)
6764, 66eqsstrdi 3988 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6867adantl 481 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6961, 68sstrd 3954 . . . . . . . . . . . 12 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (𝐴 + 𝐵))
7069sseld 3942 . . . . . . . . . . 11 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7112, 70biimtrrid 243 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7211, 71mpand 695 . . . . . . . . 9 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7372exp32 420 . . . . . . . 8 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (¬ 𝑦 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
7473com34 91 . . . . . . 7 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → (¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
75 pm2.18 128 . . . . . . 7 ((¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵))
7674, 75syl8 76 . . . . . 6 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
774, 76syl5 34 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
7877pm2.43d 53 . . . 4 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7978ssrdv 3949 . . 3 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 𝐵) ⊆ (𝐴 + 𝐵))
801, 2chsleji 31360 . . 3 (𝐴 + 𝐵) ⊆ (𝐴 𝐵)
8179, 80jctil 519 . 2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
82 eqss 3959 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
8381, 82sylibr 234 1 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3910  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  chba 30821  0c0v 30826   S csh 30830   C cch 30831   + cph 30833  spancspn 30834   chj 30835  0c0h 30837  HAtomscat 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-lm 23092  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-span 31211  df-chj 31212  df-pjh 31297  df-cv 32181  df-at 32240
This theorem is referenced by:  sumdmdi  32322  dmdbr4ati  32323  dmdbr5ati  32324
  Copyright terms: Public domain W3C validator