HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Visualization version   GIF version

Theorem sumdmdlem2 32382
Description: Lemma for sumdmdi 32383. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sumdmdlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8 𝐴C
2 sumdmdi.2 . . . . . . . 8 𝐵C
31, 2chjcli 31420 . . . . . . 7 (𝐴 𝐵) ∈ C
43cheli 31195 . . . . . 6 (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ ℋ)
5 spansnsh 31524 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
62chshii 31190 . . . . . . . . . . . . 13 𝐵S
7 shsub2 31288 . . . . . . . . . . . . 13 (((span‘{𝑦}) ∈ S𝐵S ) → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (span‘{𝑦}) ⊆ (𝐵 + (span‘{𝑦})))
9 spansnid 31526 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
108, 9sseldd 3938 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
1110ad2antrl 728 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → 𝑦 ∈ (𝐵 + (span‘{𝑦})))
12 elin 3921 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ↔ (𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)))
13 df-ne 2926 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
14 spansna 32313 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
1513, 14sylan2br 595 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (span‘{𝑦}) ∈ HAtoms)
16 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → (𝑥 𝐵) = ((span‘{𝑦}) ∨ 𝐵))
1716ineq1d 4172 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
1816ineq1d 4172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (span‘{𝑦}) → ((𝑥 𝐵) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
1918oveq1d 7368 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
2017, 19sseq12d 3971 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (span‘{𝑦}) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2120rspcv 3575 . . . . . . . . . . . . . . . . . . 19 ((span‘{𝑦}) ∈ HAtoms → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
2215, 21syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
23 spansnj 31610 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = (𝐵 (span‘{𝑦})))
24 spansnch 31523 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
25 chjcom 31469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C ∧ (span‘{𝑦}) ∈ C ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵C𝑦 ∈ ℋ) → (𝐵 (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2723, 26eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑦 ∈ ℋ) → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
282, 27mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → (𝐵 + (span‘{𝑦})) = ((span‘{𝑦}) ∨ 𝐵))
2928ineq1d 4172 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)))
3028ineq1d 4172 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴))
3130oveq1d 7368 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
3229, 31sseq12d 3971 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ (((span‘{𝑦}) ∨ 𝐵) ∩ (𝐴 𝐵)) ⊆ ((((span‘{𝑦}) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3422, 33sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3534com12 32 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
3635expdimp 452 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → (¬ 𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵)))
37 ssid 3960 . . . . . . . . . . . . . . . 16 𝐵𝐵
38 sneq 4589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → {𝑦} = {0})
3938fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (span‘{𝑦}) = (span‘{0}))
40 spansn0 31504 . . . . . . . . . . . . . . . . . . . . . 22 (span‘{0}) = 0
4139, 40eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (span‘{𝑦}) = 0)
4241oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = (𝐵 + 0))
436shs0i 31412 . . . . . . . . . . . . . . . . . . . 20 (𝐵 + 0) = 𝐵
4442, 43eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (𝐵 + (span‘{𝑦})) = 𝐵)
4544ineq1d 4172 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐴 𝐵)))
46 inss1 4190 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∩ (𝐴 𝐵)) ⊆ 𝐵
472, 1chub2i 31433 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐴 𝐵)
4837, 47ssini 4193 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ (𝐵 ∩ (𝐴 𝐵))
4946, 48eqssi 3954 . . . . . . . . . . . . . . . . . 18 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
5045, 49eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) = 𝐵)
5144ineq1d 4172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
5251oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
532, 1chincli 31423 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝐴) ∈ C
5453, 2chjcomi 31431 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝐴) ∨ 𝐵) = (𝐵 (𝐵𝐴))
552, 1chabs1i 31481 . . . . . . . . . . . . . . . . . . 19 (𝐵 (𝐵𝐴)) = 𝐵
5654, 55eqtri 2752 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) ∨ 𝐵) = 𝐵
5752, 56eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
5850, 57sseq12d 3971 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ↔ 𝐵𝐵))
5937, 58mpbiri 258 . . . . . . . . . . . . . . 15 (𝑦 = 0 → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6036, 59pm2.61d2 181 . . . . . . . . . . . . . 14 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝑦 ∈ ℋ) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
6160adantrr 717 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵))
621, 2sumdmdlem 32381 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝑦})) ∩ 𝐴) = (𝐵𝐴))
6362oveq1d 7368 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = ((𝐵𝐴) ∨ 𝐵))
6463, 56eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) = 𝐵)
651chshii 31190 . . . . . . . . . . . . . . . 16 𝐴S
666, 65shsub2i 31336 . . . . . . . . . . . . . . 15 𝐵 ⊆ (𝐴 + 𝐵)
6764, 66eqsstrdi 3982 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵)) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6867adantl 481 . . . . . . . . . . . . 13 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (((𝐵 + (span‘{𝑦})) ∩ 𝐴) ∨ 𝐵) ⊆ (𝐴 + 𝐵))
6961, 68sstrd 3948 . . . . . . . . . . . 12 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) ⊆ (𝐴 + 𝐵))
7069sseld 3936 . . . . . . . . . . 11 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ ((𝐵 + (span‘{𝑦})) ∩ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7112, 70biimtrrid 243 . . . . . . . . . 10 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → ((𝑦 ∈ (𝐵 + (span‘{𝑦})) ∧ 𝑦 ∈ (𝐴 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵)))
7211, 71mpand 695 . . . . . . . . 9 ((∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ (𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ (𝐴 + 𝐵))) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7372exp32 420 . . . . . . . 8 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (¬ 𝑦 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
7473com34 91 . . . . . . 7 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → (¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))))
75 pm2.18 128 . . . . . . 7 ((¬ 𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐴 + 𝐵))
7674, 75syl8 76 . . . . . 6 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ ℋ → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
774, 76syl5 34 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵))))
7877pm2.43d 53 . . . 4 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑦 ∈ (𝐴 𝐵) → 𝑦 ∈ (𝐴 + 𝐵)))
7978ssrdv 3943 . . 3 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 𝐵) ⊆ (𝐴 + 𝐵))
801, 2chsleji 31421 . . 3 (𝐴 + 𝐵) ⊆ (𝐴 𝐵)
8179, 80jctil 519 . 2 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
82 eqss 3953 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ ((𝐴 + 𝐵) ⊆ (𝐴 𝐵) ∧ (𝐴 𝐵) ⊆ (𝐴 + 𝐵)))
8381, 82sylibr 234 1 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3904  wss 3905  {csn 4579  cfv 6486  (class class class)co 7353  chba 30882  0c0v 30887   S csh 30891   C cch 30892   + cph 30894  spancspn 30895   chj 30896  0c0h 30898  HAtomscat 30928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30962  ax-hfvadd 30963  ax-hvcom 30964  ax-hvass 30965  ax-hv0cl 30966  ax-hvaddid 30967  ax-hfvmul 30968  ax-hvmulid 30969  ax-hvmulass 30970  ax-hvdistr1 30971  ax-hvdistr2 30972  ax-hvmul0 30973  ax-hfi 31042  ax-his1 31045  ax-his2 31046  ax-his3 31047  ax-his4 31048  ax-hcompl 31165
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-cn 23131  df-cnp 23132  df-lm 23133  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cfil 25172  df-cau 25173  df-cmet 25174  df-grpo 30456  df-gid 30457  df-ginv 30458  df-gdiv 30459  df-ablo 30508  df-vc 30522  df-nv 30555  df-va 30558  df-ba 30559  df-sm 30560  df-0v 30561  df-vs 30562  df-nmcv 30563  df-ims 30564  df-dip 30664  df-ssp 30685  df-ph 30776  df-cbn 30826  df-hnorm 30931  df-hba 30932  df-hvsub 30934  df-hlim 30935  df-hcau 30936  df-sh 31170  df-ch 31184  df-oc 31215  df-ch0 31216  df-shs 31271  df-span 31272  df-chj 31273  df-pjh 31358  df-cv 32242  df-at 32301
This theorem is referenced by:  sumdmdi  32383  dmdbr4ati  32384  dmdbr5ati  32385
  Copyright terms: Public domain W3C validator