Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccatidALTV Structured version   Visualization version   GIF version

Theorem ringccatidALTV 48281
Description: Lemma for ringccatALTV 48282. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringccatidALTV.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
ringccatidALTV (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem ringccatidALTV
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringccatidALTV.b . . 3 𝐵 = (Base‘𝐶)
21a1i 11 . 2 (𝑈𝑉𝐵 = (Base‘𝐶))
3 eqidd 2736 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 eqidd 2736 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
5 ringccatALTV.c . . . 4 𝐶 = (RingCatALTV‘𝑈)
65fvexi 6890 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 261 . 2 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 simpl 482 . . . . . 6 ((𝑈𝑉𝑥𝐵) → 𝑈𝑉)
105, 1, 9ringcbasALTV 48275 . . . . 5 ((𝑈𝑉𝑥𝐵) → 𝐵 = (𝑈 ∩ Ring))
11 eleq2 2823 . . . . . . . 8 (𝐵 = (𝑈 ∩ Ring) → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Ring)))
12 elin 3942 . . . . . . . . 9 (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥𝑈𝑥 ∈ Ring))
1312simprbi 496 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ Ring)
1411, 13biimtrdi 253 . . . . . . 7 (𝐵 = (𝑈 ∩ Ring) → (𝑥𝐵𝑥 ∈ Ring))
1514com12 32 . . . . . 6 (𝑥𝐵 → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring))
1615adantl 481 . . . . 5 ((𝑈𝑉𝑥𝐵) → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring))
1710, 16mpd 15 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥 ∈ Ring)
18 eqid 2735 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
1918idrhm 20450 . . . 4 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
2017, 19syl 17 . . 3 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
21 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
22 simpr 484 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥𝐵)
235, 1, 9, 21, 22, 22ringchomALTV 48277 . . 3 ((𝑈𝑉𝑥𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RingHom 𝑥))
2420, 23eleqtrrd 2837 . 2 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
25 simpl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
26 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 simpl 482 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑤𝐵)
28273ad2ant1 1133 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤𝐵)
2928adantl 481 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝐵)
30 simpr 484 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑥𝐵)
31303ad2ant1 1133 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
3231adantl 481 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝐵)
33 simp1 1136 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
34273ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
35303ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
365, 1, 33, 21, 34, 35ringchomALTV 48277 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RingHom 𝑥))
3736eleq2d 2820 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RingHom 𝑥)))
3837biimpd 229 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥)))
39383exp 1119 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥)))))
4039com14 96 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
41403ad2ant1 1133 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
4241com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
43423imp 1110 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))
4443impcom 407 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RingHom 𝑥))
4520expcom 413 . . . . . . 7 (𝑥𝐵 → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
4645adantl 481 . . . . . 6 ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
47463ad2ant1 1133 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
4847impcom 407 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
495, 1, 25, 26, 29, 32, 32, 44, 48ringccoALTV 48280 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
50 simpl 482 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
51 simprl 770 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
52 simprr 772 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
535, 1, 50, 21, 51, 52elringchomALTV 48278 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
5453ex 412 . . . . . . . . . 10 (𝑈𝑉 → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
5554com13 88 . . . . . . . . 9 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
56 fcoi2 6753 . . . . . . . . 9 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
5755, 56syl8 76 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
58573ad2ant1 1133 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
5958com12 32 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
6059a1d 25 . . . . 5 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))))
61603imp 1110 . . . 4 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))
6261impcom 407 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
6349, 62eqtrd 2770 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
64 simp3 1138 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑈𝑉)
6530adantr 480 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
66653ad2ant2 1134 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑥𝐵)
67 simprl 770 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
68673ad2ant2 1134 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑦𝐵)
6946adantr 480 . . . . . . . . . . 11 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
7069a1i 11 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))))
71703imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
72 simpl 482 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑈𝑉)
7365adantl 481 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑥𝐵)
7467adantl 481 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑦𝐵)
755, 1, 72, 21, 73, 74ringchomALTV 48277 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦))
7675eleq2d 2820 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦)))
7776biimpd 229 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))
7877ex 412 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))))
7978com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦))))
80793imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔 ∈ (𝑥 RingHom 𝑦))
815, 1, 64, 26, 66, 66, 68, 71, 80ringccoALTV 48280 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
825, 1, 72, 21, 73, 74elringchomALTV 48278 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
8382ex 412 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
8483com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
85843imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
86 fcoi1 6752 . . . . . . . . 9 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8785, 86syl 17 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8881, 87eqtrd 2770 . . . . . . 7 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
89883exp 1119 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
90893ad2ant2 1134 . . . . 5 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
9190expdcom 414 . . . 4 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))))
92913imp 1110 . . 3 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))
9392impcom 407 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
94 simpl 482 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
95943ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑦𝐵)
965, 1, 33, 21, 35, 95ringchomALTV 48277 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦))
9796eleq2d 2820 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦)))
9897biimpd 229 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))
99983exp 1119 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))))
10099com14 96 . . . . . . . 8 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
1011003ad2ant2 1134 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
102101com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
1031023imp 1110 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))
104103impcom 407 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RingHom 𝑦))
105 rhmco 20461 . . . 4 ((𝑔 ∈ (𝑥 RingHom 𝑦) ∧ 𝑓 ∈ (𝑤 RingHom 𝑥)) → (𝑔𝑓) ∈ (𝑤 RingHom 𝑦))
106104, 44, 105syl2anc 584 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤 RingHom 𝑦))
107943ad2ant2 1134 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
108107adantl 481 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝐵)
1095, 1, 25, 26, 29, 32, 108, 44, 104ringccoALTV 48280 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
1105, 1, 25, 21, 29, 108ringchomALTV 48277 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RingHom 𝑦))
111106, 109, 1103eltr4d 2849 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
112 coass 6254 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
113 simp2r 1201 . . . . . 6 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
114113adantl 481 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝐵)
115 simp2r 1201 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑧𝐵)
1165, 1, 33, 21, 95, 115ringchomALTV 48277 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RingHom 𝑧))
117116eleq2d 2820 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ∈ (𝑦 RingHom 𝑧)))
118117biimpd 229 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RingHom 𝑧)))
1191183exp 1119 . . . . . . . . . . 11 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RingHom 𝑧)))))
120119com14 96 . . . . . . . . . 10 ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
1211203ad2ant3 1135 . . . . . . . . 9 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
122121com13 88 . . . . . . . 8 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
1231223imp 1110 . . . . . . 7 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))
124123impcom 407 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦 RingHom 𝑧))
125 rhmco 20461 . . . . . 6 (( ∈ (𝑦 RingHom 𝑧) ∧ 𝑔 ∈ (𝑥 RingHom 𝑦)) → (𝑔) ∈ (𝑥 RingHom 𝑧))
126124, 104, 125syl2anc 584 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔) ∈ (𝑥 RingHom 𝑧))
1275, 1, 25, 26, 29, 32, 114, 44, 126ringccoALTV 48280 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
1285, 1, 25, 26, 29, 108, 114, 106, 124ringccoALTV 48280 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
129112, 127, 1283eqtr4a 2796 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
1305, 1, 25, 26, 32, 108, 114, 104, 124ringccoALTV 48280 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
131130oveq1d 7420 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
132109oveq2d 7421 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
133129, 131, 1323eqtr4d 2780 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
1342, 3, 4, 7, 8, 24, 63, 93, 111, 133iscatd2 17693 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  cop 4607  cmpt 5201   I cid 5547  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677  Ringcrg 20193   RingHom crh 20429  RingCatALTVcringcALTV 48262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-hom 17295  df-cco 17296  df-0g 17455  df-cat 17680  df-cid 17681  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-ghm 19196  df-mgp 20101  df-ur 20142  df-ring 20195  df-rhm 20432  df-ringcALTV 48263
This theorem is referenced by:  ringccatALTV  48282  ringcidALTV  48283
  Copyright terms: Public domain W3C validator