Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccatidALTV Structured version   Visualization version   GIF version

Theorem ringccatidALTV 45610
Description: Lemma for ringccatALTV 45611. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringccatidALTV.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
ringccatidALTV (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem ringccatidALTV
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringccatidALTV.b . . 3 𝐵 = (Base‘𝐶)
21a1i 11 . 2 (𝑈𝑉𝐵 = (Base‘𝐶))
3 eqidd 2739 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 eqidd 2739 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
5 ringccatALTV.c . . . 4 𝐶 = (RingCatALTV‘𝑈)
65fvexi 6788 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 260 . 2 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 simpl 483 . . . . . 6 ((𝑈𝑉𝑥𝐵) → 𝑈𝑉)
105, 1, 9ringcbasALTV 45604 . . . . 5 ((𝑈𝑉𝑥𝐵) → 𝐵 = (𝑈 ∩ Ring))
11 eleq2 2827 . . . . . . . 8 (𝐵 = (𝑈 ∩ Ring) → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Ring)))
12 elin 3903 . . . . . . . . 9 (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥𝑈𝑥 ∈ Ring))
1312simprbi 497 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ Ring)
1411, 13syl6bi 252 . . . . . . 7 (𝐵 = (𝑈 ∩ Ring) → (𝑥𝐵𝑥 ∈ Ring))
1514com12 32 . . . . . 6 (𝑥𝐵 → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring))
1615adantl 482 . . . . 5 ((𝑈𝑉𝑥𝐵) → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring))
1710, 16mpd 15 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥 ∈ Ring)
18 eqid 2738 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
1918idrhm 19975 . . . 4 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
2017, 19syl 17 . . 3 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
21 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
22 simpr 485 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥𝐵)
235, 1, 9, 21, 22, 22ringchomALTV 45606 . . 3 ((𝑈𝑉𝑥𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RingHom 𝑥))
2420, 23eleqtrrd 2842 . 2 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
25 simpl 483 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
26 eqid 2738 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 simpl 483 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑤𝐵)
28273ad2ant1 1132 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤𝐵)
2928adantl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝐵)
30 simpr 485 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑥𝐵)
31303ad2ant1 1132 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
3231adantl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝐵)
33 simp1 1135 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
34273ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
35303ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
365, 1, 33, 21, 34, 35ringchomALTV 45606 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RingHom 𝑥))
3736eleq2d 2824 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RingHom 𝑥)))
3837biimpd 228 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥)))
39383exp 1118 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥)))))
4039com14 96 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
41403ad2ant1 1132 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
4241com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))))
43423imp 1110 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑓 ∈ (𝑤 RingHom 𝑥)))
4443impcom 408 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RingHom 𝑥))
4520expcom 414 . . . . . . 7 (𝑥𝐵 → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
4645adantl 482 . . . . . 6 ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
47463ad2ant1 1132 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
4847impcom 408 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
495, 1, 25, 26, 29, 32, 32, 44, 48ringccoALTV 45609 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
50 simpl 483 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
51 simprl 768 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
52 simprr 770 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
535, 1, 50, 21, 51, 52elringchomALTV 45607 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
5453ex 413 . . . . . . . . . 10 (𝑈𝑉 → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
5554com13 88 . . . . . . . . 9 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
56 fcoi2 6649 . . . . . . . . 9 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
5755, 56syl8 76 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
58573ad2ant1 1132 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
5958com12 32 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
6059a1d 25 . . . . 5 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))))
61603imp 1110 . . . 4 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))
6261impcom 408 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
6349, 62eqtrd 2778 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
64 simp3 1137 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑈𝑉)
6530adantr 481 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
66653ad2ant2 1133 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑥𝐵)
67 simprl 768 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
68673ad2ant2 1133 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑦𝐵)
6946adantr 481 . . . . . . . . . . 11 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))
7069a1i 11 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))))
71703imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
72 simpl 483 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑈𝑉)
7365adantl 482 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑥𝐵)
7467adantl 482 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑦𝐵)
755, 1, 72, 21, 73, 74ringchomALTV 45606 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦))
7675eleq2d 2824 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦)))
7776biimpd 228 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))
7877ex 413 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))))
7978com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦))))
80793imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔 ∈ (𝑥 RingHom 𝑦))
815, 1, 64, 26, 66, 66, 68, 71, 80ringccoALTV 45609 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
825, 1, 72, 21, 73, 74elringchomALTV 45607 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
8382ex 413 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
8483com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
85843imp 1110 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
86 fcoi1 6648 . . . . . . . . 9 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8785, 86syl 17 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8881, 87eqtrd 2778 . . . . . . 7 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
89883exp 1118 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
90893ad2ant2 1133 . . . . 5 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
9190expdcom 415 . . . 4 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))))
92913imp 1110 . . 3 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))
9392impcom 408 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
94 simpl 483 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
95943ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑦𝐵)
965, 1, 33, 21, 35, 95ringchomALTV 45606 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦))
9796eleq2d 2824 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦)))
9897biimpd 228 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))
99983exp 1118 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))))
10099com14 96 . . . . . . . 8 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
1011003ad2ant2 1133 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
102101com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))))
1031023imp 1110 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑔 ∈ (𝑥 RingHom 𝑦)))
104103impcom 408 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RingHom 𝑦))
105 rhmco 19981 . . . 4 ((𝑔 ∈ (𝑥 RingHom 𝑦) ∧ 𝑓 ∈ (𝑤 RingHom 𝑥)) → (𝑔𝑓) ∈ (𝑤 RingHom 𝑦))
106104, 44, 105syl2anc 584 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤 RingHom 𝑦))
107943ad2ant2 1133 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
108107adantl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝐵)
1095, 1, 25, 26, 29, 32, 108, 44, 104ringccoALTV 45609 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
1105, 1, 25, 21, 29, 108ringchomALTV 45606 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RingHom 𝑦))
111106, 109, 1103eltr4d 2854 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
112 coass 6169 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
113 simp2r 1199 . . . . . 6 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
114113adantl 482 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝐵)
115 simp2r 1199 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑧𝐵)
1165, 1, 33, 21, 95, 115ringchomALTV 45606 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RingHom 𝑧))
117116eleq2d 2824 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ∈ (𝑦 RingHom 𝑧)))
118117biimpd 228 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RingHom 𝑧)))
1191183exp 1118 . . . . . . . . . . 11 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RingHom 𝑧)))))
120119com14 96 . . . . . . . . . 10 ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
1211203ad2ant3 1134 . . . . . . . . 9 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
122121com13 88 . . . . . . . 8 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))))
1231223imp 1110 . . . . . . 7 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 ∈ (𝑦 RingHom 𝑧)))
124123impcom 408 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦 RingHom 𝑧))
125 rhmco 19981 . . . . . 6 (( ∈ (𝑦 RingHom 𝑧) ∧ 𝑔 ∈ (𝑥 RingHom 𝑦)) → (𝑔) ∈ (𝑥 RingHom 𝑧))
126124, 104, 125syl2anc 584 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔) ∈ (𝑥 RingHom 𝑧))
1275, 1, 25, 26, 29, 32, 114, 44, 126ringccoALTV 45609 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
1285, 1, 25, 26, 29, 108, 114, 106, 124ringccoALTV 45609 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
129112, 127, 1283eqtr4a 2804 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
1305, 1, 25, 26, 32, 108, 114, 104, 124ringccoALTV 45609 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
131130oveq1d 7290 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
132109oveq2d 7291 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
133129, 131, 1323eqtr4d 2788 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
1342, 3, 4, 7, 8, 24, 63, 93, 111, 133iscatd2 17390 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cop 4567  cmpt 5157   I cid 5488  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  Ringcrg 19783   RingHom crh 19956  RingCatALTVcringcALTV 45562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-hom 16986  df-cco 16987  df-0g 17152  df-cat 17377  df-cid 17378  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-rnghom 19959  df-ringcALTV 45564
This theorem is referenced by:  ringccatALTV  45611  ringcidALTV  45612
  Copyright terms: Public domain W3C validator