Step | Hyp | Ref
| Expression |
1 | | ringccatidALTV.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | 1 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) |
3 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
4 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (comp‘𝐶) = (comp‘𝐶)) |
5 | | ringccatALTV.c |
. . . 4
⊢ 𝐶 = (RingCatALTV‘𝑈) |
6 | 5 | fvexi 6770 |
. . 3
⊢ 𝐶 ∈ V |
7 | 6 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
8 | | biid 260 |
. 2
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) |
9 | | simpl 482 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
10 | 5, 1, 9 | ringcbasALTV 45492 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (𝑈 ∩ Ring)) |
11 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝐵 = (𝑈 ∩ Ring) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
12 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring)) |
13 | 12 | simprbi 496 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ Ring) |
14 | 11, 13 | syl6bi 252 |
. . . . . . 7
⊢ (𝐵 = (𝑈 ∩ Ring) → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
15 | 14 | com12 32 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring)) |
16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring)) |
17 | 10, 16 | mpd 15 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
18 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑥) =
(Base‘𝑥) |
19 | 18 | idrhm 19890 |
. . . 4
⊢ (𝑥 ∈ Ring → ( I ↾
(Base‘𝑥)) ∈
(𝑥 RingHom 𝑥)) |
20 | 17, 19 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
21 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
22 | | simpr 484 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
23 | 5, 1, 9, 21, 22, 22 | ringchomALTV 45494 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RingHom 𝑥)) |
24 | 20, 23 | eleqtrrd 2842 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
25 | | simpl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈 ∈ 𝑉) |
26 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
27 | | simpl 482 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
28 | 27 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤 ∈ 𝐵) |
29 | 28 | adantl 481 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤 ∈ 𝐵) |
30 | | simpr 484 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
31 | 30 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝐵) |
32 | 31 | adantl 481 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ 𝐵) |
33 | | simp1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
34 | 27 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
35 | 30 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
36 | 5, 1, 33, 21, 34, 35 | ringchomALTV 45494 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RingHom 𝑥)) |
37 | 36 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RingHom 𝑥))) |
38 | 37 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥))) |
39 | 38 | 3exp 1117 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
40 | 39 | com14 96 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
41 | 40 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
42 | 41 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
43 | 42 | 3imp 1109 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))) |
44 | 43 | impcom 407 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RingHom 𝑥)) |
45 | 20 | expcom 413 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
46 | 45 | adantl 481 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
47 | 46 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
48 | 47 | impcom 407 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
49 | 5, 1, 25, 26, 29, 32, 32, 44, 48 | ringccoALTV 45497 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓)) |
50 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
51 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
52 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
53 | 5, 1, 50, 21, 51, 52 | elringchomALTV 45495 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))) |
54 | 53 | ex 412 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝑉 → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
55 | 54 | com13 88 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
56 | | fcoi2 6633 |
. . . . . . . . 9
⊢ (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
57 | 55, 56 | syl8 76 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
58 | 57 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
59 | 58 | com12 32 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
60 | 59 | a1d 25 |
. . . . 5
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))) |
61 | 60 | 3imp 1109 |
. . . 4
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)) |
62 | 61 | impcom 407 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
63 | 49, 62 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
64 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ 𝑉) |
65 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
66 | 65 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑥 ∈ 𝐵) |
67 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
68 | 67 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑦 ∈ 𝐵) |
69 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
70 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))) |
71 | 70 | 3imp 1109 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
72 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑈 ∈ 𝑉) |
73 | 65 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑥 ∈ 𝐵) |
74 | 67 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑦 ∈ 𝐵) |
75 | 5, 1, 72, 21, 73, 74 | ringchomALTV 45494 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦)) |
76 | 75 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦))) |
77 | 76 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
78 | 77 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))) |
79 | 78 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦)))) |
80 | 79 | 3imp 1109 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔 ∈ (𝑥 RingHom 𝑦)) |
81 | 5, 1, 64, 26, 66, 66, 68, 71, 80 | ringccoALTV 45497 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥)))) |
82 | 5, 1, 72, 21, 73, 74 | elringchomALTV 45495 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))) |
83 | 82 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
84 | 83 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
85 | 84 | 3imp 1109 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) |
86 | | fcoi1 6632 |
. . . . . . . . 9
⊢ (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
88 | 81, 87 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
89 | 88 | 3exp 1117 |
. . . . . 6
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
90 | 89 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
91 | 90 | expdcom 414 |
. . . 4
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))) |
92 | 91 | 3imp 1109 |
. . 3
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)) |
93 | 92 | impcom 407 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
94 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
95 | 94 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
96 | 5, 1, 33, 21, 35, 95 | ringchomALTV 45494 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦)) |
97 | 96 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦))) |
98 | 97 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
99 | 98 | 3exp 1117 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
100 | 99 | com14 96 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
101 | 100 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
102 | 101 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
103 | 102 | 3imp 1109 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
104 | 103 | impcom 407 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RingHom 𝑦)) |
105 | | rhmco 19896 |
. . . 4
⊢ ((𝑔 ∈ (𝑥 RingHom 𝑦) ∧ 𝑓 ∈ (𝑤 RingHom 𝑥)) → (𝑔 ∘ 𝑓) ∈ (𝑤 RingHom 𝑦)) |
106 | 104, 44, 105 | syl2anc 583 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ 𝑓) ∈ (𝑤 RingHom 𝑦)) |
107 | 94 | 3ad2ant2 1132 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
108 | 107 | adantl 481 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ 𝐵) |
109 | 5, 1, 25, 26, 29, 32, 108, 44, 104 | ringccoALTV 45497 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) = (𝑔 ∘ 𝑓)) |
110 | 5, 1, 25, 21, 29, 108 | ringchomALTV 45494 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RingHom 𝑦)) |
111 | 106, 109,
110 | 3eltr4d 2854 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
112 | | coass 6158 |
. . . 4
⊢ ((ℎ ∘ 𝑔) ∘ 𝑓) = (ℎ ∘ (𝑔 ∘ 𝑓)) |
113 | | simp2r 1198 |
. . . . . 6
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
114 | 113 | adantl 481 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ 𝐵) |
115 | | simp2r 1198 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
116 | 5, 1, 33, 21, 95, 115 | ringchomALTV 45494 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RingHom 𝑧)) |
117 | 116 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ℎ ∈ (𝑦 RingHom 𝑧))) |
118 | 117 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RingHom 𝑧))) |
119 | 118 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RingHom 𝑧))))) |
120 | 119 | com14 96 |
. . . . . . . . . 10
⊢ (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
121 | 120 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
122 | 121 | com13 88 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
123 | 122 | 3imp 1109 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))) |
124 | 123 | impcom 407 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦 RingHom 𝑧)) |
125 | | rhmco 19896 |
. . . . . 6
⊢ ((ℎ ∈ (𝑦 RingHom 𝑧) ∧ 𝑔 ∈ (𝑥 RingHom 𝑦)) → (ℎ ∘ 𝑔) ∈ (𝑥 RingHom 𝑧)) |
126 | 124, 104,
125 | syl2anc 583 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∘ 𝑔) ∈ (𝑥 RingHom 𝑧)) |
127 | 5, 1, 25, 26, 29, 32, 114, 44, 126 | ringccoALTV 45497 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔) ∘ 𝑓)) |
128 | 5, 1, 25, 26, 29, 108, 114, 106, 124 | ringccoALTV 45497 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓)) = (ℎ ∘ (𝑔 ∘ 𝑓))) |
129 | 112, 127,
128 | 3eqtr4a 2805 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
130 | 5, 1, 25, 26, 32, 108, 114, 104, 124 | ringccoALTV 45497 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ ∘ 𝑔)) |
131 | 130 | oveq1d 7270 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓)) |
132 | 109 | oveq2d 7271 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓)) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
133 | 129, 131,
132 | 3eqtr4d 2788 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
134 | 2, 3, 4, 7, 8, 24,
63, 93, 111, 133 | iscatd2 17307 |
1
⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |