MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   GIF version

Theorem dvdsaddre2b 15647
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 15646 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 15646 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
21a1d 25 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
323exp 1113 . . . . 5 (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
43com24 95 . . . 4 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
543imp 1105 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
65com12 32 . 2 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
7 dvdszrcl 15602 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 pm2.24 124 . . . . . . 7 (𝐵 ∈ ℤ → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
97, 8simpl2im 504 . . . . . 6 (𝐴𝐵 → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
109com12 32 . . . . 5 𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
1110adantr 481 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
12 dvdszrcl 15602 . . . . . 6 (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ))
13 zcn 11975 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1413adantr 481 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐶 ∈ ℂ)
15 recn 10616 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 724 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1714, 16addcomd 10831 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
18 eldif 3950 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (ℝ ∖ ℤ) ↔ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ))
19 nzadd 12019 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ (ℝ ∖ ℤ))
2019eldifbd 3953 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2120expcom 414 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → (𝐵 ∈ (ℝ ∖ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2218, 21syl5bir 244 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℤ → ((𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2322imp 407 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2417, 23eqneltrd 2937 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐶 + 𝐵) ∈ ℤ)
2524exp32 421 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ¬ (𝐶 + 𝐵) ∈ ℤ)))
26 pm2.21 123 . . . . . . . . . . . . 13 (¬ (𝐶 + 𝐵) ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
2725, 26syl8 76 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2827adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2928com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
3029a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))))
31303imp 1105 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))
3231impcom 408 . . . . . . 7 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
3332com12 32 . . . . . 6 ((𝐶 + 𝐵) ∈ ℤ → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3412, 33simpl2im 504 . . . . 5 (𝐴 ∥ (𝐶 + 𝐵) → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3534com12 32 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐴𝐵))
3611, 35impbid 213 . . 3 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
3736ex 413 . 2 𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
386, 37pm2.61i 183 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081  wcel 2107  cdif 3937   class class class wbr 5063  (class class class)co 7148  cc 10524  cr 10525   + caddc 10529  cz 11970  cdvds 15597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-dvds 15598
This theorem is referenced by:  2lgsoddprmlem2  25902
  Copyright terms: Public domain W3C validator