MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   GIF version

Theorem dvdsaddre2b 16344
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 16343 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 16343 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
21a1d 25 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
323exp 1120 . . . . 5 (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
43com24 95 . . . 4 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
543imp 1111 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
65com12 32 . 2 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
7 dvdszrcl 16295 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 pm2.24 124 . . . . . . 7 (𝐵 ∈ ℤ → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
97, 8simpl2im 503 . . . . . 6 (𝐴𝐵 → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
109com12 32 . . . . 5 𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
1110adantr 480 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
12 dvdszrcl 16295 . . . . . 6 (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ))
13 zcn 12618 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐶 ∈ ℂ)
15 recn 11245 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1714, 16addcomd 11463 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
18 eldif 3961 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (ℝ ∖ ℤ) ↔ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ))
19 nzadd 12665 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ (ℝ ∖ ℤ))
2019eldifbd 3964 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2120expcom 413 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → (𝐵 ∈ (ℝ ∖ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2218, 21biimtrrid 243 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℤ → ((𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2322imp 406 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2417, 23eqneltrd 2861 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐶 + 𝐵) ∈ ℤ)
2524exp32 420 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ¬ (𝐶 + 𝐵) ∈ ℤ)))
26 pm2.21 123 . . . . . . . . . . . . 13 (¬ (𝐶 + 𝐵) ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
2725, 26syl8 76 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2827adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2928com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
3029a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))))
31303imp 1111 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))
3231impcom 407 . . . . . . 7 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
3332com12 32 . . . . . 6 ((𝐶 + 𝐵) ∈ ℤ → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3412, 33simpl2im 503 . . . . 5 (𝐴 ∥ (𝐶 + 𝐵) → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3534com12 32 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐴𝐵))
3611, 35impbid 212 . . 3 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
3736ex 412 . 2 𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
386, 37pm2.61i 182 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  cdif 3948   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154   + caddc 11158  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  2lgsoddprmlem2  27453
  Copyright terms: Public domain W3C validator