MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   GIF version

Theorem dvdsaddre2b 16255
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 16254 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 16254 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
21a1d 25 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
323exp 1118 . . . . 5 (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
43com24 95 . . . 4 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
543imp 1110 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
65com12 32 . 2 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
7 dvdszrcl 16207 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 pm2.24 124 . . . . . . 7 (𝐵 ∈ ℤ → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
97, 8simpl2im 503 . . . . . 6 (𝐴𝐵 → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
109com12 32 . . . . 5 𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
1110adantr 480 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
12 dvdszrcl 16207 . . . . . 6 (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ))
13 zcn 12568 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐶 ∈ ℂ)
15 recn 11203 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 725 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1714, 16addcomd 11421 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
18 eldif 3959 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (ℝ ∖ ℤ) ↔ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ))
19 nzadd 12615 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ (ℝ ∖ ℤ))
2019eldifbd 3962 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2120expcom 413 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → (𝐵 ∈ (ℝ ∖ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2218, 21biimtrrid 242 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℤ → ((𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2322imp 406 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2417, 23eqneltrd 2852 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐶 + 𝐵) ∈ ℤ)
2524exp32 420 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ¬ (𝐶 + 𝐵) ∈ ℤ)))
26 pm2.21 123 . . . . . . . . . . . . 13 (¬ (𝐶 + 𝐵) ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
2725, 26syl8 76 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2827adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2928com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
3029a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))))
31303imp 1110 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))
3231impcom 407 . . . . . . 7 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
3332com12 32 . . . . . 6 ((𝐶 + 𝐵) ∈ ℤ → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3412, 33simpl2im 503 . . . . 5 (𝐴 ∥ (𝐶 + 𝐵) → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3534com12 32 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐴𝐵))
3611, 35impbid 211 . . 3 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
3736ex 412 . 2 𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
386, 37pm2.61i 182 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086  wcel 2105  cdif 3946   class class class wbr 5149  (class class class)co 7412  cc 11111  cr 11112   + caddc 11116  cz 12563  cdvds 16202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-dvds 16203
This theorem is referenced by:  2lgsoddprmlem2  27145
  Copyright terms: Public domain W3C validator