Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngccatidALTV Structured version   Visualization version   GIF version

Theorem rngccatidALTV 44259
Description: Lemma for rngccatALTV 44260. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngccatALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngccatidALTV.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
rngccatidALTV (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem rngccatidALTV
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngccatidALTV.b . . 3 𝐵 = (Base‘𝐶)
21a1i 11 . 2 (𝑈𝑉𝐵 = (Base‘𝐶))
3 eqidd 2822 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 eqidd 2822 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
5 rngccatALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
65fvexi 6683 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 263 . 2 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 simpl 485 . . . . . 6 ((𝑈𝑉𝑥𝐵) → 𝑈𝑉)
105, 1, 9rngcbasALTV 44253 . . . . 5 ((𝑈𝑉𝑥𝐵) → 𝐵 = (𝑈 ∩ Rng))
11 eleq2 2901 . . . . . . . 8 (𝐵 = (𝑈 ∩ Rng) → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Rng)))
12 elin 4168 . . . . . . . . 9 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
1312simprbi 499 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥 ∈ Rng)
1411, 13syl6bi 255 . . . . . . 7 (𝐵 = (𝑈 ∩ Rng) → (𝑥𝐵𝑥 ∈ Rng))
1514com12 32 . . . . . 6 (𝑥𝐵 → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng))
1615adantl 484 . . . . 5 ((𝑈𝑉𝑥𝐵) → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng))
1710, 16mpd 15 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥 ∈ Rng)
18 eqid 2821 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
1918idrnghm 44178 . . . 4 (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
2017, 19syl 17 . . 3 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
21 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
22 simpr 487 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥𝐵)
235, 1, 9, 21, 22, 22rngchomALTV 44255 . . 3 ((𝑈𝑉𝑥𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RngHomo 𝑥))
2420, 23eleqtrrd 2916 . 2 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
25 simpl 485 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
26 eqid 2821 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 simpl 485 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑤𝐵)
28273ad2ant1 1129 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤𝐵)
2928adantl 484 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝐵)
30 simpr 487 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑥𝐵)
31303ad2ant1 1129 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
3231adantl 484 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝐵)
33 simp1 1132 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
34273ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
35303ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
365, 1, 33, 21, 34, 35rngchomALTV 44255 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RngHomo 𝑥))
3736eleq2d 2898 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RngHomo 𝑥)))
3837biimpd 231 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥)))
39383exp 1115 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥)))))
4039com14 96 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
41403ad2ant1 1129 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
4241com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
43423imp 1107 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))
4443impcom 410 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RngHomo 𝑥))
4520expcom 416 . . . . . . 7 (𝑥𝐵 → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
4645adantl 484 . . . . . 6 ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
47463ad2ant1 1129 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
4847impcom 410 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
495, 1, 25, 26, 29, 32, 32, 44, 48rngccoALTV 44258 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
50 simpl 485 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
51 simprl 769 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
52 simprr 771 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
535, 1, 50, 21, 51, 52elrngchomALTV 44256 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
5453ex 415 . . . . . . . . . 10 (𝑈𝑉 → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
5554com13 88 . . . . . . . . 9 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
56 fcoi2 6552 . . . . . . . . 9 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
5755, 56syl8 76 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
58573ad2ant1 1129 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
5958com12 32 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
6059a1d 25 . . . . 5 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))))
61603imp 1107 . . . 4 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))
6261impcom 410 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
6349, 62eqtrd 2856 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
64 simp3 1134 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑈𝑉)
6530adantr 483 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
66653ad2ant2 1130 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑥𝐵)
67 simprl 769 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
68673ad2ant2 1130 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑦𝐵)
6946adantr 483 . . . . . . . . . . 11 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
7069a1i 11 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))))
71703imp 1107 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
72 simpl 485 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑈𝑉)
7365adantl 484 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑥𝐵)
7467adantl 484 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑦𝐵)
755, 1, 72, 21, 73, 74rngchomALTV 44255 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦))
7675eleq2d 2898 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦)))
7776biimpd 231 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))
7877ex 415 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦))))
7978com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦))))
80793imp 1107 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔 ∈ (𝑥 RngHomo 𝑦))
815, 1, 64, 26, 66, 66, 68, 71, 80rngccoALTV 44258 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
825, 1, 72, 21, 73, 74elrngchomALTV 44256 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
8382ex 415 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
8483com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
85843imp 1107 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
86 fcoi1 6551 . . . . . . . . 9 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8785, 86syl 17 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8881, 87eqtrd 2856 . . . . . . 7 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
89883exp 1115 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
90893ad2ant2 1130 . . . . 5 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
9190expdcom 417 . . . 4 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))))
92913imp 1107 . . 3 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))
9392impcom 410 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
94 simp2l 1195 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑦𝐵)
955, 1, 33, 21, 35, 94rngchomALTV 44255 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦))
9695eleq2d 2898 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦)))
9796biimpd 231 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))
98973exp 1115 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))))
9998com14 96 . . . . . . . 8 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
100993ad2ant2 1130 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
101100com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
1021013imp 1107 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))
103102impcom 410 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RngHomo 𝑦))
104 rnghmco 44177 . . . 4 ((𝑔 ∈ (𝑥 RngHomo 𝑦) ∧ 𝑓 ∈ (𝑤 RngHomo 𝑥)) → (𝑔𝑓) ∈ (𝑤 RngHomo 𝑦))
105103, 44, 104syl2anc 586 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤 RngHomo 𝑦))
106 simp2l 1195 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
107106adantl 484 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝐵)
1085, 1, 25, 26, 29, 32, 107, 44, 103rngccoALTV 44258 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
1095, 1, 25, 21, 29, 107rngchomALTV 44255 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RngHomo 𝑦))
110105, 108, 1093eltr4d 2928 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
111 coass 6117 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
112 simp2r 1196 . . . . . 6 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
113112adantl 484 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝐵)
114 simp2r 1196 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑧𝐵)
1155, 1, 33, 21, 94, 114rngchomALTV 44255 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RngHomo 𝑧))
116115eleq2d 2898 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ∈ (𝑦 RngHomo 𝑧)))
117116biimpd 231 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RngHomo 𝑧)))
1181173exp 1115 . . . . . . . . . . 11 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RngHomo 𝑧)))))
119118com14 96 . . . . . . . . . 10 ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
1201193ad2ant3 1131 . . . . . . . . 9 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
121120com13 88 . . . . . . . 8 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
1221213imp 1107 . . . . . . 7 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))
123122impcom 410 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦 RngHomo 𝑧))
124 rnghmco 44177 . . . . . 6 (( ∈ (𝑦 RngHomo 𝑧) ∧ 𝑔 ∈ (𝑥 RngHomo 𝑦)) → (𝑔) ∈ (𝑥 RngHomo 𝑧))
125123, 103, 124syl2anc 586 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔) ∈ (𝑥 RngHomo 𝑧))
1265, 1, 25, 26, 29, 32, 113, 44, 125rngccoALTV 44258 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
1275, 1, 25, 26, 29, 107, 113, 105, 123rngccoALTV 44258 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
128111, 126, 1273eqtr4a 2882 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
1295, 1, 25, 26, 32, 107, 113, 103, 123rngccoALTV 44258 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
130129oveq1d 7170 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
131108oveq2d 7171 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
132128, 130, 1313eqtr4d 2866 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
1332, 3, 4, 7, 8, 24, 63, 93, 110, 132iscatd2 16951 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  cin 3934  cop 4572  cmpt 5145   I cid 5458  cres 5556  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  Basecbs 16482  Hom chom 16575  compcco 16576  Catccat 16934  Idccid 16935  Rngcrng 44144   RngHomo crngh 44155  RngCatALTVcrngcALTV 44228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-hom 16588  df-cco 16589  df-0g 16714  df-cat 16938  df-cid 16939  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-ghm 18355  df-abl 18908  df-mgp 19239  df-mgmhm 44045  df-rng0 44145  df-rnghomo 44157  df-rngcALTV 44230
This theorem is referenced by:  rngccatALTV  44260  rngcidALTV  44261  rhmsubcALTVlem3  44376
  Copyright terms: Public domain W3C validator