Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngccatidALTV Structured version   Visualization version   GIF version

Theorem rngccatidALTV 43625
Description: Lemma for rngccatALTV 43626. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngccatALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngccatidALTV.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
rngccatidALTV (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem rngccatidALTV
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngccatidALTV.b . . 3 𝐵 = (Base‘𝐶)
21a1i 11 . 2 (𝑈𝑉𝐵 = (Base‘𝐶))
3 eqidd 2779 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 eqidd 2779 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
5 rngccatALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
65fvexi 6515 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 253 . 2 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 simpl 475 . . . . . 6 ((𝑈𝑉𝑥𝐵) → 𝑈𝑉)
105, 1, 9rngcbasALTV 43619 . . . . 5 ((𝑈𝑉𝑥𝐵) → 𝐵 = (𝑈 ∩ Rng))
11 eleq2 2854 . . . . . . . 8 (𝐵 = (𝑈 ∩ Rng) → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Rng)))
12 elin 4059 . . . . . . . . 9 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
1312simprbi 489 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥 ∈ Rng)
1411, 13syl6bi 245 . . . . . . 7 (𝐵 = (𝑈 ∩ Rng) → (𝑥𝐵𝑥 ∈ Rng))
1514com12 32 . . . . . 6 (𝑥𝐵 → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng))
1615adantl 474 . . . . 5 ((𝑈𝑉𝑥𝐵) → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng))
1710, 16mpd 15 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥 ∈ Rng)
18 eqid 2778 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
1918idrnghm 43544 . . . 4 (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
2017, 19syl 17 . . 3 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
21 eqid 2778 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
22 simpr 477 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥𝐵)
235, 1, 9, 21, 22, 22rngchomALTV 43621 . . 3 ((𝑈𝑉𝑥𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RngHomo 𝑥))
2420, 23eleqtrrd 2869 . 2 ((𝑈𝑉𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
25 simpl 475 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
26 eqid 2778 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 simpl 475 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑤𝐵)
28273ad2ant1 1113 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤𝐵)
2928adantl 474 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝐵)
30 simpr 477 . . . . . 6 ((𝑤𝐵𝑥𝐵) → 𝑥𝐵)
31303ad2ant1 1113 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
3231adantl 474 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝐵)
33 simp1 1116 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
34273ad2ant3 1115 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
35303ad2ant3 1115 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
365, 1, 33, 21, 34, 35rngchomALTV 43621 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RngHomo 𝑥))
3736eleq2d 2851 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RngHomo 𝑥)))
3837biimpd 221 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥)))
39383exp 1099 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥)))))
4039com14 96 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
41403ad2ant1 1113 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
4241com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))))
43423imp 1091 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑓 ∈ (𝑤 RngHomo 𝑥)))
4443impcom 399 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RngHomo 𝑥))
4520expcom 406 . . . . . . 7 (𝑥𝐵 → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
4645adantl 474 . . . . . 6 ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
47463ad2ant1 1113 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
4847impcom 399 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
495, 1, 25, 26, 29, 32, 32, 44, 48rngccoALTV 43624 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
50 simpl 475 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑈𝑉)
51 simprl 758 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑤𝐵)
52 simprr 760 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → 𝑥𝐵)
535, 1, 50, 21, 51, 52elrngchomALTV 43622 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑤𝐵𝑥𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
5453ex 405 . . . . . . . . . 10 (𝑈𝑉 → ((𝑤𝐵𝑥𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
5554com13 88 . . . . . . . . 9 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑓:(Base‘𝑤)⟶(Base‘𝑥))))
56 fcoi2 6384 . . . . . . . . 9 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
5755, 56syl8 76 . . . . . . . 8 (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
58573ad2ant1 1113 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
5958com12 32 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))
6059a1d 25 . . . . 5 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))))
61603imp 1091 . . . 4 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))
6261impcom 399 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
6349, 62eqtrd 2814 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
64 simp3 1118 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑈𝑉)
6530adantr 473 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
66653ad2ant2 1114 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑥𝐵)
67 simprl 758 . . . . . . . . . 10 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
68673ad2ant2 1114 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑦𝐵)
6946adantr 473 . . . . . . . . . . 11 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))
7069a1i 11 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))))
71703imp 1091 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))
72 simpl 475 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑈𝑉)
7365adantl 474 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑥𝐵)
7467adantl 474 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → 𝑦𝐵)
755, 1, 72, 21, 73, 74rngchomALTV 43621 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦))
7675eleq2d 2851 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦)))
7776biimpd 221 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))
7877ex 405 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦))))
7978com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦))))
80793imp 1091 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔 ∈ (𝑥 RngHomo 𝑦))
815, 1, 64, 26, 66, 66, 68, 71, 80rngccoALTV 43624 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
825, 1, 72, 21, 73, 74elrngchomALTV 43622 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
8382ex 405 . . . . . . . . . . 11 (𝑈𝑉 → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
8483com13 88 . . . . . . . . . 10 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉𝑔:(Base‘𝑥)⟶(Base‘𝑦))))
85843imp 1091 . . . . . . . . 9 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
86 fcoi1 6383 . . . . . . . . 9 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8785, 86syl 17 . . . . . . . 8 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
8881, 87eqtrd 2814 . . . . . . 7 ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑈𝑉) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
89883exp 1099 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
90893ad2ant2 1114 . . . . 5 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))
9190expdcom 407 . . . 4 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))))
92913imp 1091 . . 3 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))
9392impcom 399 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
94 simp2l 1179 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑦𝐵)
955, 1, 33, 21, 35, 94rngchomALTV 43621 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦))
9695eleq2d 2851 . . . . . . . . . . 11 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦)))
9796biimpd 221 . . . . . . . . . 10 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))
98973exp 1099 . . . . . . . . 9 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))))
9998com14 96 . . . . . . . 8 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
100993ad2ant2 1114 . . . . . . 7 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
101100com13 88 . . . . . 6 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))))
1021013imp 1091 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉𝑔 ∈ (𝑥 RngHomo 𝑦)))
103102impcom 399 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RngHomo 𝑦))
104 rnghmco 43543 . . . 4 ((𝑔 ∈ (𝑥 RngHomo 𝑦) ∧ 𝑓 ∈ (𝑤 RngHomo 𝑥)) → (𝑔𝑓) ∈ (𝑤 RngHomo 𝑦))
105103, 44, 104syl2anc 576 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤 RngHomo 𝑦))
106 simp2l 1179 . . . . 5 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
107106adantl 474 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝐵)
1085, 1, 25, 26, 29, 32, 107, 44, 103rngccoALTV 43624 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
1095, 1, 25, 21, 29, 107rngchomALTV 43621 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RngHomo 𝑦))
110105, 108, 1093eltr4d 2881 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
111 coass 5959 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
112 simp2r 1180 . . . . . 6 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
113112adantl 474 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝐵)
114 simp2r 1180 . . . . . . . . . . . . . . 15 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → 𝑧𝐵)
1155, 1, 33, 21, 94, 114rngchomALTV 43621 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RngHomo 𝑧))
116115eleq2d 2851 . . . . . . . . . . . . 13 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ∈ (𝑦 RngHomo 𝑧)))
117116biimpd 221 . . . . . . . . . . . 12 ((𝑈𝑉 ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑤𝐵𝑥𝐵)) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RngHomo 𝑧)))
1181173exp 1099 . . . . . . . . . . 11 (𝑈𝑉 → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ∈ (𝑦 RngHomo 𝑧)))))
119118com14 96 . . . . . . . . . 10 ( ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
1201193ad2ant3 1115 . . . . . . . . 9 ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦𝐵𝑧𝐵) → ((𝑤𝐵𝑥𝐵) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
121120com13 88 . . . . . . . 8 ((𝑤𝐵𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))))
1221213imp 1091 . . . . . . 7 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑉 ∈ (𝑦 RngHomo 𝑧)))
123122impcom 399 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦 RngHomo 𝑧))
124 rnghmco 43543 . . . . . 6 (( ∈ (𝑦 RngHomo 𝑧) ∧ 𝑔 ∈ (𝑥 RngHomo 𝑦)) → (𝑔) ∈ (𝑥 RngHomo 𝑧))
125123, 103, 124syl2anc 576 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔) ∈ (𝑥 RngHomo 𝑧))
1265, 1, 25, 26, 29, 32, 113, 44, 125rngccoALTV 43624 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
1275, 1, 25, 26, 29, 107, 113, 105, 123rngccoALTV 43624 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
128111, 126, 1273eqtr4a 2840 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
1295, 1, 25, 26, 32, 107, 113, 103, 123rngccoALTV 43624 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
130129oveq1d 6993 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
131108oveq2d 6994 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
132128, 130, 1313eqtr4d 2824 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
1332, 3, 4, 7, 8, 24, 63, 93, 110, 132iscatd2 16813 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  Vcvv 3415  cin 3830  cop 4448  cmpt 5009   I cid 5312  cres 5410  ccom 5412  wf 6186  cfv 6190  (class class class)co 6978  Basecbs 16342  Hom chom 16435  compcco 16436  Catccat 16796  Idccid 16797  Rngcrng 43510   RngHomo crngh 43521  RngCatALTVcrngcALTV 43594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-fz 12712  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-plusg 16437  df-hom 16448  df-cco 16449  df-0g 16574  df-cat 16800  df-cid 16801  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-grp 17897  df-ghm 18130  df-abl 18672  df-mgp 18966  df-mgmhm 43415  df-rng0 43511  df-rnghomo 43523  df-rngcALTV 43596
This theorem is referenced by:  rngccatALTV  43626  rngcidALTV  43627  rhmsubcALTVlem3  43742
  Copyright terms: Public domain W3C validator