Step | Hyp | Ref
| Expression |
1 | | rngccatidALTV.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | 1 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) |
3 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
4 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (comp‘𝐶) = (comp‘𝐶)) |
5 | | rngccatALTV.c |
. . . 4
⊢ 𝐶 = (RngCatALTV‘𝑈) |
6 | 5 | fvexi 6788 |
. . 3
⊢ 𝐶 ∈ V |
7 | 6 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
8 | | biid 260 |
. 2
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) |
9 | | simpl 483 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
10 | 5, 1, 9 | rngcbasALTV 45541 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (𝑈 ∩ Rng)) |
11 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝐵 = (𝑈 ∩ Rng) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
12 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
13 | 12 | simprbi 497 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥 ∈ Rng) |
14 | 11, 13 | syl6bi 252 |
. . . . . . 7
⊢ (𝐵 = (𝑈 ∩ Rng) → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
15 | 14 | com12 32 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng)) |
16 | 15 | adantl 482 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝐵 = (𝑈 ∩ Rng) → 𝑥 ∈ Rng)) |
17 | 10, 16 | mpd 15 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
18 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑥) =
(Base‘𝑥) |
19 | 18 | idrnghm 45466 |
. . . 4
⊢ (𝑥 ∈ Rng → ( I ↾
(Base‘𝑥)) ∈
(𝑥 RngHomo 𝑥)) |
20 | 17, 19 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)) |
21 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
22 | | simpr 485 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
23 | 5, 1, 9, 21, 22, 22 | rngchomALTV 45543 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RngHomo 𝑥)) |
24 | 20, 23 | eleqtrrd 2842 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
25 | | simpl 483 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈 ∈ 𝑉) |
26 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
27 | | simpl 483 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
28 | 27 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤 ∈ 𝐵) |
29 | 28 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤 ∈ 𝐵) |
30 | | simpr 485 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
31 | 30 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝐵) |
32 | 31 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ 𝐵) |
33 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
34 | 27 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
35 | 30 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
36 | 5, 1, 33, 21, 34, 35 | rngchomALTV 45543 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RngHomo 𝑥)) |
37 | 36 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RngHomo 𝑥))) |
38 | 37 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥))) |
39 | 38 | 3exp 1118 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RngHomo 𝑥))))) |
40 | 39 | com14 96 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RngHomo 𝑥))))) |
41 | 40 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RngHomo 𝑥))))) |
42 | 41 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RngHomo 𝑥))))) |
43 | 42 | 3imp 1110 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RngHomo 𝑥))) |
44 | 43 | impcom 408 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RngHomo 𝑥)) |
45 | 20 | expcom 414 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))) |
46 | 45 | adantl 482 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))) |
47 | 46 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))) |
48 | 47 | impcom 408 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)) |
49 | 5, 1, 25, 26, 29, 32, 32, 44, 48 | rngccoALTV 45546 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓)) |
50 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
51 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
52 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
53 | 5, 1, 50, 21, 51, 52 | elrngchomALTV 45544 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))) |
54 | 53 | ex 413 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝑉 → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
55 | 54 | com13 88 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
56 | | fcoi2 6649 |
. . . . . . . . 9
⊢ (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
57 | 55, 56 | syl8 76 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
58 | 57 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
59 | 58 | com12 32 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
60 | 59 | a1d 25 |
. . . . 5
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))) |
61 | 60 | 3imp 1110 |
. . . 4
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)) |
62 | 61 | impcom 408 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
63 | 49, 62 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
64 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ 𝑉) |
65 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
66 | 65 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑥 ∈ 𝐵) |
67 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
68 | 67 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑦 ∈ 𝐵) |
69 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥))) |
70 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)))) |
71 | 70 | 3imp 1110 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)) |
72 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑈 ∈ 𝑉) |
73 | 65 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑥 ∈ 𝐵) |
74 | 67 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑦 ∈ 𝐵) |
75 | 5, 1, 72, 21, 73, 74 | rngchomALTV 45543 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦)) |
76 | 75 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦))) |
77 | 76 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦))) |
78 | 77 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦)))) |
79 | 78 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RngHomo 𝑦)))) |
80 | 79 | 3imp 1110 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔 ∈ (𝑥 RngHomo 𝑦)) |
81 | 5, 1, 64, 26, 66, 66, 68, 71, 80 | rngccoALTV 45546 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥)))) |
82 | 5, 1, 72, 21, 73, 74 | elrngchomALTV 45544 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))) |
83 | 82 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
84 | 83 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
85 | 84 | 3imp 1110 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) |
86 | | fcoi1 6648 |
. . . . . . . . 9
⊢ (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
88 | 81, 87 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
89 | 88 | 3exp 1118 |
. . . . . 6
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
90 | 89 | 3ad2ant2 1133 |
. . . . 5
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
91 | 90 | expdcom 415 |
. . . 4
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))) |
92 | 91 | 3imp 1110 |
. . 3
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)) |
93 | 92 | impcom 408 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
94 | | simp2l 1198 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
95 | 5, 1, 33, 21, 35, 94 | rngchomALTV 45543 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RngHomo 𝑦)) |
96 | 95 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RngHomo 𝑦))) |
97 | 96 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦))) |
98 | 97 | 3exp 1118 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RngHomo 𝑦))))) |
99 | 98 | com14 96 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RngHomo 𝑦))))) |
100 | 99 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RngHomo 𝑦))))) |
101 | 100 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RngHomo 𝑦))))) |
102 | 101 | 3imp 1110 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RngHomo 𝑦))) |
103 | 102 | impcom 408 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RngHomo 𝑦)) |
104 | | rnghmco 45465 |
. . . 4
⊢ ((𝑔 ∈ (𝑥 RngHomo 𝑦) ∧ 𝑓 ∈ (𝑤 RngHomo 𝑥)) → (𝑔 ∘ 𝑓) ∈ (𝑤 RngHomo 𝑦)) |
105 | 103, 44, 104 | syl2anc 584 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ 𝑓) ∈ (𝑤 RngHomo 𝑦)) |
106 | | simp2l 1198 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
107 | 106 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ 𝐵) |
108 | 5, 1, 25, 26, 29, 32, 107, 44, 103 | rngccoALTV 45546 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) = (𝑔 ∘ 𝑓)) |
109 | 5, 1, 25, 21, 29, 107 | rngchomALTV 45543 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RngHomo 𝑦)) |
110 | 105, 108,
109 | 3eltr4d 2854 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
111 | | coass 6169 |
. . . 4
⊢ ((ℎ ∘ 𝑔) ∘ 𝑓) = (ℎ ∘ (𝑔 ∘ 𝑓)) |
112 | | simp2r 1199 |
. . . . . 6
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
113 | 112 | adantl 482 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ 𝐵) |
114 | | simp2r 1199 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
115 | 5, 1, 33, 21, 94, 114 | rngchomALTV 45543 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RngHomo 𝑧)) |
116 | 115 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ℎ ∈ (𝑦 RngHomo 𝑧))) |
117 | 116 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RngHomo 𝑧))) |
118 | 117 | 3exp 1118 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RngHomo 𝑧))))) |
119 | 118 | com14 96 |
. . . . . . . . . 10
⊢ (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RngHomo 𝑧))))) |
120 | 119 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RngHomo 𝑧))))) |
121 | 120 | com13 88 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RngHomo 𝑧))))) |
122 | 121 | 3imp 1110 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RngHomo 𝑧))) |
123 | 122 | impcom 408 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦 RngHomo 𝑧)) |
124 | | rnghmco 45465 |
. . . . . 6
⊢ ((ℎ ∈ (𝑦 RngHomo 𝑧) ∧ 𝑔 ∈ (𝑥 RngHomo 𝑦)) → (ℎ ∘ 𝑔) ∈ (𝑥 RngHomo 𝑧)) |
125 | 123, 103,
124 | syl2anc 584 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∘ 𝑔) ∈ (𝑥 RngHomo 𝑧)) |
126 | 5, 1, 25, 26, 29, 32, 113, 44, 125 | rngccoALTV 45546 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔) ∘ 𝑓)) |
127 | 5, 1, 25, 26, 29, 107, 113, 105, 123 | rngccoALTV 45546 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓)) = (ℎ ∘ (𝑔 ∘ 𝑓))) |
128 | 111, 126,
127 | 3eqtr4a 2804 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
129 | 5, 1, 25, 26, 32, 107, 113, 103, 123 | rngccoALTV 45546 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ ∘ 𝑔)) |
130 | 129 | oveq1d 7290 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓)) |
131 | 108 | oveq2d 7291 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓)) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
132 | 128, 130,
131 | 3eqtr4d 2788 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
133 | 2, 3, 4, 7, 8, 24,
63, 93, 110, 132 | iscatd2 17390 |
1
⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |