| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqseqim2 | Structured version Visualization version GIF version | ||
| Description: Lemma for erimeq2 38715. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| dmqseqim2 | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmqseqim 38693 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) | |
| 2 | eleq2 2820 | . 2 ⊢ (ran 𝑅 = ∪ 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)) | |
| 3 | 1, 2 | syl8 76 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∪ cuni 4859 dom cdm 5616 ran crn 5617 Rel wrel 5621 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: erimeq2 38715 |
| Copyright terms: Public domain | W3C validator |