MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qreccl Structured version   Visualization version   GIF version

Theorem qreccl 12638
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Proof of Theorem qreccl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12619 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnne0 11937 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
32ancli 548 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0))
4 neeq1 3005 . . . . . . . . . 10 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
5 zcn 12254 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 nncn 11911 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
75, 6anim12i 612 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
8 divne0b 11574 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
983expa 1116 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
107, 9sylan 579 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
1110bicomd 222 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → ((𝑥 / 𝑦) ≠ 0 ↔ 𝑥 ≠ 0))
124, 11sylan9bbr 510 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 ≠ 0 ↔ 𝑥 ≠ 0))
13 nnz 12272 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
14 zmulcl 12299 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
1513, 14sylan2 592 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℤ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑦) ∈ ℤ)
17 msqznn 12332 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
1817adantlr 711 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
1916, 18jca 511 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
2019adantlr 711 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
2120adantlr 711 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
22 oveq2 7263 . . . . . . . . . . . . 13 (𝐴 = (𝑥 / 𝑦) → (1 / 𝐴) = (1 / (𝑥 / 𝑦)))
23 divid 11592 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
2423adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 / 𝑥) = 1)
2524oveq1d 7270 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = (1 / (𝑥 / 𝑦)))
26 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → 𝑥 ∈ ℂ)
27 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
29 divdivdiv 11606 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3026, 27, 27, 28, 29syl22anc 835 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3125, 30eqtr3d 2780 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3231an4s 656 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 ≠ 0 ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
337, 32sylan 579 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3433anass1rs 651 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3522, 34sylan9eqr 2801 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3635an32s 648 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3721, 36jca 511 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))
3837ex 412 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
3912, 38sylbid 239 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
4039ex 412 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
4140anasss 466 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
423, 41sylan2 592 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
43 rspceov 7302 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
44433expa 1116 . . . . . 6 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
45 elq 12619 . . . . . 6 ((1 / 𝐴) ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
4644, 45sylibr 233 . . . . 5 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → (1 / 𝐴) ∈ ℚ)
4742, 46syl8 76 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ)))
4847rexlimivv 3220 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ))
491, 48sylbi 216 . 2 (𝐴 ∈ ℚ → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ))
5049imp 406 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  cn 11903  cz 12249  cq 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-q 12618
This theorem is referenced by:  qdivcl  12639  qexpclz  13731  qsubdrg  20562  mpaaeu  40891
  Copyright terms: Public domain W3C validator