MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qreccl Structured version   Visualization version   GIF version

Theorem qreccl 12869
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Proof of Theorem qreccl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12850 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnne0 12166 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
32ancli 548 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0))
4 neeq1 2991 . . . . . . . . . 10 (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
5 zcn 12480 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 nncn 12140 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
75, 6anim12i 613 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
8 divne0b 11794 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
983expa 1118 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
107, 9sylan 580 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝑥 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
1110bicomd 223 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → ((𝑥 / 𝑦) ≠ 0 ↔ 𝑥 ≠ 0))
124, 11sylan9bbr 510 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 ≠ 0 ↔ 𝑥 ≠ 0))
13 nnz 12496 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
14 zmulcl 12527 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
1513, 14sylan2 593 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℤ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑦) ∈ ℤ)
17 msqznn 12561 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
1817adantlr 715 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
1916, 18jca 511 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
2019adantlr 715 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
2120adantlr 715 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
22 oveq2 7360 . . . . . . . . . . . . 13 (𝐴 = (𝑥 / 𝑦) → (1 / 𝐴) = (1 / (𝑥 / 𝑦)))
23 divid 11814 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
2423adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 / 𝑥) = 1)
2524oveq1d 7367 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = (1 / (𝑥 / 𝑦)))
26 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → 𝑥 ∈ ℂ)
27 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
29 divdivdiv 11829 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3026, 27, 27, 28, 29syl22anc 838 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3125, 30eqtr3d 2770 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3231an4s 660 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 ≠ 0 ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
337, 32sylan 580 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑥 ≠ 0 ∧ 𝑦 ≠ 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3433anass1rs 655 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3522, 34sylan9eqr 2790 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3635an32s 652 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
3721, 36jca 511 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))
3837ex 412 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
3912, 38sylbid 240 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
4039ex 412 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
4140anasss 466 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
423, 41sylan2 593 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
43 rspceov 7401 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
44433expa 1118 . . . . . 6 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
45 elq 12850 . . . . . 6 ((1 / 𝐴) ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
4644, 45sylibr 234 . . . . 5 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → (1 / 𝐴) ∈ ℚ)
4742, 46syl8 76 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ)))
4847rexlimivv 3175 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ))
491, 48sylbi 217 . 2 (𝐴 ∈ ℚ → (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℚ))
5049imp 406 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   · cmul 11018   / cdiv 11781  cn 12132  cz 12475  cq 12848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-q 12849
This theorem is referenced by:  qdivcl  12870  qexpclz  13990  qsubdrg  21358  mpaaeu  43268
  Copyright terms: Public domain W3C validator