![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkqhash | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set of closed walks of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 7-Jul-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
Ref | Expression |
---|---|
numclwwlkqhash | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | numclwwlk.q | . . . . 5 ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | |
3 | 1, 2 | numclwwlkovq 29147 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
4 | 3 | adantl 483 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
5 | 4 | fveq2d 6844 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
6 | nnnn0 12379 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | eqid 2738 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
8 | eqid 2738 | . . . . 5 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
9 | 7, 8, 1 | clwwlknclwwlkdifnum 28753 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)))) |
10 | 6, 9 | sylanr2 682 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)))) |
11 | 1 | iswwlksnon 28627 | . . . . . . 7 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
12 | wwlknlsw 28621 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤‘𝑁) = (lastS‘𝑤)) | |
13 | eqcom 2745 | . . . . . . . . . . . 12 ⊢ ((𝑤‘0) = 𝑋 ↔ 𝑋 = (𝑤‘0)) | |
14 | 13 | biimpi 215 | . . . . . . . . . . 11 ⊢ ((𝑤‘0) = 𝑋 → 𝑋 = (𝑤‘0)) |
15 | 12, 14 | eqeqan12d 2752 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘𝑁) = 𝑋 ↔ (lastS‘𝑤) = (𝑤‘0))) |
16 | 15 | pm5.32da 580 | . . . . . . . . 9 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) = (𝑤‘0)))) |
17 | 16 | biancomd 465 | . . . . . . . 8 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))) |
18 | 17 | rabbiia 3410 | . . . . . . 7 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} |
19 | 11, 18 | eqtri 2766 | . . . . . 6 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} |
20 | 19 | fveq2i 6843 | . . . . 5 ⊢ (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) |
21 | 20 | a1i 11 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) |
22 | 21 | oveq2d 7368 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋))) = ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}))) |
23 | 10, 22 | eqtrd 2778 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}))) |
24 | ovex 7385 | . . . . 5 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
25 | 24 | rabex 5288 | . . . 4 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V |
26 | clwwlkvbij 28886 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
27 | 26 | adantl 483 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) |
28 | hasheqf1oi 14205 | . . . 4 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) | |
29 | 25, 27, 28 | mpsyl 68 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))) |
30 | 29 | oveq2d 7368 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
31 | 5, 23, 30 | 3eqtrd 2782 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2942 {crab 3406 Vcvv 3444 class class class wbr 5104 –1-1-onto→wf1o 6493 ‘cfv 6494 (class class class)co 7352 ∈ cmpo 7354 Fincfn 8842 0cc0 11010 − cmin 11344 ℕcn 12112 ℕ0cn0 12372 ↑cexp 13922 ♯chash 14184 lastSclsw 14404 Vtxcvtx 27776 RegUSGraph crusgr 28333 WWalksN cwwlksn 28600 WWalksNOn cwwlksnon 28601 ClWWalksNOncclwwlknon 28860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-inf2 9536 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 ax-pre-sup 11088 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-disj 5070 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-se 5588 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-isom 6503 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-1st 7914 df-2nd 7915 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-2o 8406 df-oadd 8409 df-er 8607 df-map 8726 df-pm 8727 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-sup 9337 df-oi 9405 df-dju 9796 df-card 9834 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-div 11772 df-nn 12113 df-2 12175 df-3 12176 df-n0 12373 df-xnn0 12445 df-z 12459 df-uz 12723 df-rp 12871 df-xadd 12989 df-fz 13380 df-fzo 13523 df-seq 13862 df-exp 13923 df-hash 14185 df-word 14357 df-lsw 14405 df-concat 14413 df-s1 14438 df-substr 14487 df-pfx 14517 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-clim 15330 df-sum 15531 df-vtx 27778 df-iedg 27779 df-edg 27828 df-uhgr 27838 df-ushgr 27839 df-upgr 27862 df-umgr 27863 df-uspgr 27930 df-usgr 27931 df-fusgr 28094 df-nbgr 28110 df-vtxdg 28243 df-rgr 28334 df-rusgr 28335 df-wwlks 28604 df-wwlksn 28605 df-wwlksnon 28606 df-clwwlk 28755 df-clwwlkn 28798 df-clwwlknon 28861 |
This theorem is referenced by: numclwwlk2 29154 |
Copyright terms: Public domain | W3C validator |