MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkqhash Structured version   Visualization version   GIF version

Theorem numclwwlkqhash 30224
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set of closed walks of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 7-Jul-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
Assertion
Ref Expression
numclwwlkqhash (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝐾   𝑀,𝑉
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlkqhash
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
2 numclwwlk.q . . . . 5 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
31, 2numclwwlkovq 30223 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
43adantl 480 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
54fveq2d 6894 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}))
6 nnnn0 12504 . . . 4 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
7 eqid 2725 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
8 eqid 2725 . . . . 5 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
97, 8, 1clwwlknclwwlkdifnum 29829 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
106, 9sylanr2 681 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
111iswwlksnon 29703 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)}
12 wwlknlsw 29697 . . . . . . . . . . 11 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (π‘€β€˜π‘) = (lastSβ€˜π‘€))
13 eqcom 2732 . . . . . . . . . . . 12 ((π‘€β€˜0) = 𝑋 ↔ 𝑋 = (π‘€β€˜0))
1413biimpi 215 . . . . . . . . . . 11 ((π‘€β€˜0) = 𝑋 β†’ 𝑋 = (π‘€β€˜0))
1512, 14eqeqan12d 2739 . . . . . . . . . 10 ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ ((π‘€β€˜π‘) = 𝑋 ↔ (lastSβ€˜π‘€) = (π‘€β€˜0)))
1615pm5.32da 577 . . . . . . . . 9 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) = (π‘€β€˜0))))
1716biancomd 462 . . . . . . . 8 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)))
1817rabbiia 3423 . . . . . . 7 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}
1911, 18eqtri 2753 . . . . . 6 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}
2019fveq2i 6893 . . . . 5 (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})
2120a1i 11 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}))
2221oveq2d 7429 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))) = ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})))
2310, 22eqtrd 2765 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})))
24 ovex 7446 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
2524rabex 5330 . . . 4 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} ∈ V
26 clwwlkvbij 29962 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
2726adantl 480 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
28 hasheqf1oi 14337 . . . 4 ({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} ∈ V β†’ (βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
2925, 27, 28mpsyl 68 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
3029oveq2d 7429 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
315, 23, 303eqtrd 2769 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  {crab 3419  Vcvv 3463   class class class wbr 5144  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415  Fincfn 8957  0cc0 11133   βˆ’ cmin 11469  β„•cn 12237  β„•0cn0 12497  β†‘cexp 14053  β™―chash 14316  lastSclsw 14539  Vtxcvtx 28848   RegUSGraph crusgr 29409   WWalksN cwwlksn 29676   WWalksNOn cwwlksnon 29677  ClWWalksNOncclwwlknon 29936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-disj 5110  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-rp 13002  df-xadd 13120  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-word 14492  df-lsw 14540  df-concat 14548  df-s1 14573  df-substr 14618  df-pfx 14648  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-vtx 28850  df-iedg 28851  df-edg 28900  df-uhgr 28910  df-ushgr 28911  df-upgr 28934  df-umgr 28935  df-uspgr 29002  df-usgr 29003  df-fusgr 29169  df-nbgr 29185  df-vtxdg 29319  df-rgr 29410  df-rusgr 29411  df-wwlks 29680  df-wwlksn 29681  df-wwlksnon 29682  df-clwwlk 29831  df-clwwlkn 29874  df-clwwlknon 29937
This theorem is referenced by:  numclwwlk2  30230
  Copyright terms: Public domain W3C validator