![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkqhash | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set of closed walks of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 7-Jul-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
Ref | Expression |
---|---|
numclwwlkqhash | ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | numclwwlk.q | . . . . 5 ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | |
3 | 1, 2 | numclwwlkovq 27802 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
4 | 3 | adantl 475 | . . 3 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
5 | 4 | fveq2d 6450 | . 2 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
6 | nnnn0 11650 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | eqid 2778 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
8 | eqid 2778 | . . . . 5 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
9 | 7, 8, 1 | clwwlknclwwlkdifnum 27360 | . . . 4 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)))) |
10 | 6, 9 | sylanr2 673 | . . 3 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)))) |
11 | 1 | iswwlksnon 27202 | . . . . . . 7 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
12 | wwlknlsw 27196 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤‘𝑁) = (lastS‘𝑤)) | |
13 | eqcom 2785 | . . . . . . . . . . . 12 ⊢ ((𝑤‘0) = 𝑋 ↔ 𝑋 = (𝑤‘0)) | |
14 | 13 | biimpi 208 | . . . . . . . . . . 11 ⊢ ((𝑤‘0) = 𝑋 → 𝑋 = (𝑤‘0)) |
15 | 12, 14 | eqeqan12d 2794 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘𝑁) = 𝑋 ↔ (lastS‘𝑤) = (𝑤‘0))) |
16 | 15 | pm5.32da 574 | . . . . . . . . 9 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) = (𝑤‘0)))) |
17 | ancom 454 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) | |
18 | 16, 17 | syl6bb 279 | . . . . . . . 8 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))) |
19 | 18 | rabbiia 3381 | . . . . . . 7 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} |
20 | 11, 19 | eqtri 2802 | . . . . . 6 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} |
21 | 20 | fveq2i 6449 | . . . . 5 ⊢ (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) |
22 | 21 | a1i 11 | . . . 4 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) |
23 | 22 | oveq2d 6938 | . . 3 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝐾↑𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋))) = ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}))) |
24 | 10, 23 | eqtrd 2814 | . 2 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}))) |
25 | ovex 6954 | . . . . 5 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
26 | 25 | rabex 5049 | . . . 4 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V |
27 | clwwlkvbij 27515 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
28 | 27 | adantl 475 | . . . 4 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) |
29 | hasheqf1oi 13457 | . . . 4 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) | |
30 | 26, 28, 29 | mpsyl 68 | . . 3 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))) |
31 | 30 | oveq2d 6938 | . 2 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝐾↑𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
32 | 5, 24, 31 | 3eqtrd 2818 | 1 ⊢ (((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾↑𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2107 ≠ wne 2969 {crab 3094 Vcvv 3398 class class class wbr 4886 –1-1-onto→wf1o 6134 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 Fincfn 8241 0cc0 10272 − cmin 10606 ℕcn 11374 ℕ0cn0 11642 ↑cexp 13178 ♯chash 13435 lastSclsw 13652 Vtxcvtx 26344 RegUSGraphcrusgr 26904 WWalksN cwwlksn 27175 WWalksNOn cwwlksnon 27176 ClWWalksNOncclwwlknon 27489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-disj 4855 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-rp 12138 df-xadd 12258 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-word 13600 df-lsw 13653 df-concat 13661 df-s1 13686 df-substr 13731 df-pfx 13780 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-vtx 26346 df-iedg 26347 df-edg 26396 df-uhgr 26406 df-ushgr 26407 df-upgr 26430 df-umgr 26431 df-uspgr 26499 df-usgr 26500 df-fusgr 26664 df-nbgr 26680 df-vtxdg 26814 df-rgr 26905 df-rusgr 26906 df-wwlks 27179 df-wwlksn 27180 df-wwlksnon 27181 df-clwwlk 27362 df-clwwlkn 27414 df-clwwlknon 27490 |
This theorem is referenced by: numclwwlk2 27813 |
Copyright terms: Public domain | W3C validator |