MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkqhash Structured version   Visualization version   GIF version

Theorem numclwwlkqhash 27803
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set of closed walks of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 7-Jul-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkqhash (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlkqhash
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 numclwwlk.q . . . . 5 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 27802 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
43adantl 475 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
54fveq2d 6450 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
6 nnnn0 11650 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 eqid 2778 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
8 eqid 2778 . . . . 5 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
97, 8, 1clwwlknclwwlkdifnum 27360 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
106, 9sylanr2 673 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
111iswwlksnon 27202 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
12 wwlknlsw 27196 . . . . . . . . . . 11 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤𝑁) = (lastS‘𝑤))
13 eqcom 2785 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋𝑋 = (𝑤‘0))
1413biimpi 208 . . . . . . . . . . 11 ((𝑤‘0) = 𝑋𝑋 = (𝑤‘0))
1512, 14eqeqan12d 2794 . . . . . . . . . 10 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤𝑁) = 𝑋 ↔ (lastS‘𝑤) = (𝑤‘0)))
1615pm5.32da 574 . . . . . . . . 9 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) = (𝑤‘0))))
17 ancom 454 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))
1816, 17syl6bb 279 . . . . . . . 8 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋) ↔ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
1918rabbiia 3381 . . . . . . 7 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}
2011, 19eqtri 2802 . . . . . 6 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}
2120fveq2i 6449 . . . . 5 (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})
2221a1i 11 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}))
2322oveq2d 6938 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝐾𝑁) − (♯‘(𝑋(𝑁 WWalksNOn 𝐺)𝑋))) = ((𝐾𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})))
2410, 23eqtrd 2814 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) = ((𝐾𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})))
25 ovex 6954 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
2625rabex 5049 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V
27 clwwlkvbij 27515 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
2827adantl 475 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
29 hasheqf1oi 13457 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))))
3026, 28, 29mpsyl 68 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)))
3130oveq2d 6938 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝐾𝑁) − (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) = ((𝐾𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))))
325, 24, 313eqtrd 2818 1 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(𝑋𝑄𝑁)) = ((𝐾𝑁) − (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wex 1823  wcel 2107  wne 2969  {crab 3094  Vcvv 3398   class class class wbr 4886  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  cmpt2 6924  Fincfn 8241  0cc0 10272  cmin 10606  cn 11374  0cn0 11642  cexp 13178  chash 13435  lastSclsw 13652  Vtxcvtx 26344  RegUSGraphcrusgr 26904   WWalksN cwwlksn 27175   WWalksNOn cwwlksnon 27176  ClWWalksNOncclwwlknon 27489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-xadd 12258  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-vtx 26346  df-iedg 26347  df-edg 26396  df-uhgr 26406  df-ushgr 26407  df-upgr 26430  df-umgr 26431  df-uspgr 26499  df-usgr 26500  df-fusgr 26664  df-nbgr 26680  df-vtxdg 26814  df-rgr 26905  df-rusgr 26906  df-wwlks 27179  df-wwlksn 27180  df-wwlksnon 27181  df-clwwlk 27362  df-clwwlkn 27414  df-clwwlknon 27490
This theorem is referenced by:  numclwwlk2  27813
  Copyright terms: Public domain W3C validator