MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkqhash Structured version   Visualization version   GIF version

Theorem numclwwlkqhash 29625
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set of closed walks of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 7-Jul-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
Assertion
Ref Expression
numclwwlkqhash (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝐾   𝑀,𝑉
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlkqhash
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
2 numclwwlk.q . . . . 5 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
31, 2numclwwlkovq 29624 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
43adantl 482 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
54fveq2d 6895 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}))
6 nnnn0 12478 . . . 4 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
7 eqid 2732 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
8 eqid 2732 . . . . 5 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
97, 8, 1clwwlknclwwlkdifnum 29230 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
106, 9sylanr2 681 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))))
111iswwlksnon 29104 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)}
12 wwlknlsw 29098 . . . . . . . . . . 11 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (π‘€β€˜π‘) = (lastSβ€˜π‘€))
13 eqcom 2739 . . . . . . . . . . . 12 ((π‘€β€˜0) = 𝑋 ↔ 𝑋 = (π‘€β€˜0))
1413biimpi 215 . . . . . . . . . . 11 ((π‘€β€˜0) = 𝑋 β†’ 𝑋 = (π‘€β€˜0))
1512, 14eqeqan12d 2746 . . . . . . . . . 10 ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ ((π‘€β€˜π‘) = 𝑋 ↔ (lastSβ€˜π‘€) = (π‘€β€˜0)))
1615pm5.32da 579 . . . . . . . . 9 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) = (π‘€β€˜0))))
1716biancomd 464 . . . . . . . 8 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)))
1817rabbiia 3436 . . . . . . 7 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}
1911, 18eqtri 2760 . . . . . 6 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}
2019fveq2i 6894 . . . . 5 (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})
2120a1i 11 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋)) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}))
2221oveq2d 7424 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(𝑁 WWalksNOn 𝐺)𝑋))) = ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})))
2310, 22eqtrd 2772 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}) = ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})))
24 ovex 7441 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
2524rabex 5332 . . . 4 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} ∈ V
26 clwwlkvbij 29363 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
2726adantl 482 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
28 hasheqf1oi 14310 . . . 4 ({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} ∈ V β†’ (βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
2925, 27, 28mpsyl 68 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
3029oveq2d 7424 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((𝐾↑𝑁) βˆ’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)})) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
315, 23, 303eqtrd 2776 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄𝑁)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474   class class class wbr 5148  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  Fincfn 8938  0cc0 11109   βˆ’ cmin 11443  β„•cn 12211  β„•0cn0 12471  β†‘cexp 14026  β™―chash 14289  lastSclsw 14511  Vtxcvtx 28253   RegUSGraph crusgr 28810   WWalksN cwwlksn 29077   WWalksNOn cwwlksnon 29078  ClWWalksNOncclwwlknon 29337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-rp 12974  df-xadd 13092  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-vtx 28255  df-iedg 28256  df-edg 28305  df-uhgr 28315  df-ushgr 28316  df-upgr 28339  df-umgr 28340  df-uspgr 28407  df-usgr 28408  df-fusgr 28571  df-nbgr 28587  df-vtxdg 28720  df-rgr 28811  df-rusgr 28812  df-wwlks 29081  df-wwlksn 29082  df-wwlksnon 29083  df-clwwlk 29232  df-clwwlkn 29275  df-clwwlknon 29338
This theorem is referenced by:  numclwwlk2  29631
  Copyright terms: Public domain W3C validator