Step | Hyp | Ref
| Expression |
1 | | numclwwlk.v |
. . . . 5
β’ π = (VtxβπΊ) |
2 | | numclwwlk.q |
. . . . 5
β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
3 | 1, 2 | numclwwlkovq 29624 |
. . . 4
β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
4 | 3 | adantl 482 |
. . 3
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
5 | 4 | fveq2d 6895 |
. 2
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β(πππ)) = (β―β{π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)})) |
6 | | nnnn0 12478 |
. . . 4
β’ (π β β β π β
β0) |
7 | | eqid 2732 |
. . . . 5
β’ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)} = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)} |
8 | | eqid 2732 |
. . . . 5
β’ (π(π WWalksNOn πΊ)π) = (π(π WWalksNOn πΊ)π) |
9 | 7, 8, 1 | clwwlknclwwlkdifnum 29230 |
. . . 4
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β0)) β
(β―β{π€ β
(π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) = ((πΎβπ) β (β―β(π(π WWalksNOn πΊ)π)))) |
10 | 6, 9 | sylanr2 681 |
. . 3
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β{π€ β
(π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) = ((πΎβπ) β (β―β(π(π WWalksNOn πΊ)π)))) |
11 | 1 | iswwlksnon 29104 |
. . . . . . 7
β’ (π(π WWalksNOn πΊ)π) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (π€βπ) = π)} |
12 | | wwlknlsw 29098 |
. . . . . . . . . . 11
β’ (π€ β (π WWalksN πΊ) β (π€βπ) = (lastSβπ€)) |
13 | | eqcom 2739 |
. . . . . . . . . . . 12
β’ ((π€β0) = π β π = (π€β0)) |
14 | 13 | biimpi 215 |
. . . . . . . . . . 11
β’ ((π€β0) = π β π = (π€β0)) |
15 | 12, 14 | eqeqan12d 2746 |
. . . . . . . . . 10
β’ ((π€ β (π WWalksN πΊ) β§ (π€β0) = π) β ((π€βπ) = π β (lastSβπ€) = (π€β0))) |
16 | 15 | pm5.32da 579 |
. . . . . . . . 9
β’ (π€ β (π WWalksN πΊ) β (((π€β0) = π β§ (π€βπ) = π) β ((π€β0) = π β§ (lastSβπ€) = (π€β0)))) |
17 | 16 | biancomd 464 |
. . . . . . . 8
β’ (π€ β (π WWalksN πΊ) β (((π€β0) = π β§ (π€βπ) = π) β ((lastSβπ€) = (π€β0) β§ (π€β0) = π))) |
18 | 17 | rabbiia 3436 |
. . . . . . 7
β’ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (π€βπ) = π)} = {π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)} |
19 | 11, 18 | eqtri 2760 |
. . . . . 6
β’ (π(π WWalksNOn πΊ)π) = {π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)} |
20 | 19 | fveq2i 6894 |
. . . . 5
β’
(β―β(π(π WWalksNOn πΊ)π)) = (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}) |
21 | 20 | a1i 11 |
. . . 4
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β(π(π WWalksNOn πΊ)π)) = (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)})) |
22 | 21 | oveq2d 7424 |
. . 3
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β ((πΎβπ) β (β―β(π(π WWalksNOn πΊ)π))) = ((πΎβπ) β (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}))) |
23 | 10, 22 | eqtrd 2772 |
. 2
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β{π€ β
(π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) = ((πΎβπ) β (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}))) |
24 | | ovex 7441 |
. . . . 5
β’ (π WWalksN πΊ) β V |
25 | 24 | rabex 5332 |
. . . 4
β’ {π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)} β V |
26 | | clwwlkvbij 29363 |
. . . . 5
β’ ((π β π β§ π β β) β βπ π:{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}β1-1-ontoβ(π(ClWWalksNOnβπΊ)π)) |
27 | 26 | adantl 482 |
. . . 4
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β βπ π:{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}β1-1-ontoβ(π(ClWWalksNOnβπΊ)π)) |
28 | | hasheqf1oi 14310 |
. . . 4
β’ ({π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)} β V β (βπ π:{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}β1-1-ontoβ(π(ClWWalksNOnβπΊ)π) β (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}) = (β―β(π(ClWWalksNOnβπΊ)π)))) |
29 | 25, 27, 28 | mpsyl 68 |
. . 3
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β{π€ β
(π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)}) = (β―β(π(ClWWalksNOnβπΊ)π))) |
30 | 29 | oveq2d 7424 |
. 2
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β ((πΎβπ) β (β―β{π€ β (π WWalksN πΊ) β£ ((lastSβπ€) = (π€β0) β§ (π€β0) = π)})) = ((πΎβπ) β (β―β(π(ClWWalksNOnβπΊ)π)))) |
31 | 5, 23, 30 | 3eqtrd 2776 |
1
β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ π β β)) β
(β―β(πππ)) = ((πΎβπ) β (β―β(π(ClWWalksNOnβπΊ)π)))) |