![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsubel | Structured version Visualization version GIF version |
Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
Ref | Expression |
---|---|
fzsubel | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 12651 | . . 3 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
2 | fzaddel 13591 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ -𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) | |
3 | 1, 2 | sylanr2 681 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) |
4 | zcn 12617 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | zcn 12617 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
6 | 4, 5 | anim12i 611 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
7 | zcn 12617 | . . . 4 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℂ) | |
8 | zcn 12617 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
9 | 7, 8 | anim12i 611 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) |
10 | negsub 11560 | . . . . 5 ⊢ ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) | |
11 | 10 | adantl 480 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) |
12 | negsub 11560 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + -𝐾) = (𝑀 − 𝐾)) | |
13 | negsub 11560 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 + -𝐾) = (𝑁 − 𝐾)) | |
14 | 12, 13 | oveqan12d 7445 | . . . . . 6 ⊢ (((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
15 | 14 | anandirs 677 | . . . . 5 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
16 | 15 | adantrl 714 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
17 | 11, 16 | eleq12d 2820 | . . 3 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
18 | 6, 9, 17 | syl2an 594 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
19 | 3, 18 | bitrd 278 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 (class class class)co 7426 ℂcc 11158 + caddc 11163 − cmin 11496 -cneg 11497 ℤcz 12612 ...cfz 13540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-n0 12527 df-z 12613 df-fz 13541 |
This theorem is referenced by: elfzp1b 13634 elfzm1b 13635 fsum0diag2 15789 fprodser 15953 vdwapun 16978 sylow1lem1 19598 fzm1ne1 32693 ballotlemfrceq 34364 poimirlem16 37339 poimirlem17 37340 poimirlem19 37342 poimirlem20 37343 fdc 37448 stoweidlem11 45650 stoweidlem34 45673 |
Copyright terms: Public domain | W3C validator |