| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsubel | Structured version Visualization version GIF version | ||
| Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| Ref | Expression |
|---|---|
| fzsubel | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 12507 | . . 3 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
| 2 | fzaddel 13458 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ -𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) | |
| 3 | 1, 2 | sylanr2 683 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) |
| 4 | zcn 12473 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 5 | zcn 12473 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 6 | 4, 5 | anim12i 613 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 7 | zcn 12473 | . . . 4 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℂ) | |
| 8 | zcn 12473 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 9 | 7, 8 | anim12i 613 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) |
| 10 | negsub 11409 | . . . . 5 ⊢ ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) |
| 12 | negsub 11409 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + -𝐾) = (𝑀 − 𝐾)) | |
| 13 | negsub 11409 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 + -𝐾) = (𝑁 − 𝐾)) | |
| 14 | 12, 13 | oveqan12d 7365 | . . . . . 6 ⊢ (((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 15 | 14 | anandirs 679 | . . . . 5 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 16 | 15 | adantrl 716 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 17 | 11, 16 | eleq12d 2825 | . . 3 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| 18 | 6, 9, 17 | syl2an 596 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| 19 | 3, 18 | bitrd 279 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 -cneg 11345 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-fz 13408 |
| This theorem is referenced by: elfzp1b 13501 elfzm1b 13502 fsum0diag2 15690 fprodser 15856 vdwapun 16886 sylow1lem1 19510 fzm1ne1 32771 ballotlemfrceq 34542 poimirlem16 37686 poimirlem17 37687 poimirlem19 37689 poimirlem20 37690 fdc 37795 stoweidlem11 46119 stoweidlem34 46142 |
| Copyright terms: Public domain | W3C validator |