| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢ (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| 2 | | 0nn0 12521 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 3 | 2 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 0 ∈
ℕ0) |
| 4 | | simpl1 1192 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝑅 ∈ 𝑉) |
| 5 | | simpl3 1194 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝐹:𝑅⟶ℕ0) |
| 6 | 5 | frnd 6719 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ⊆
ℕ0) |
| 7 | | nn0ssz 12616 |
. . . . . 6
⊢
ℕ0 ⊆ ℤ |
| 8 | 6, 7 | sstrdi 3976 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ⊆ ℤ) |
| 9 | 5 | fdmd 6721 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → dom 𝐹 = 𝑅) |
| 10 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝑅 ≠ ∅) |
| 11 | 9, 10 | eqnetrd 3000 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → dom 𝐹 ≠ ∅) |
| 12 | | dm0rn0 5909 |
. . . . . . 7
⊢ (dom
𝐹 = ∅ ↔ ran
𝐹 =
∅) |
| 13 | 12 | necon3bii 2985 |
. . . . . 6
⊢ (dom
𝐹 ≠ ∅ ↔ ran
𝐹 ≠
∅) |
| 14 | 11, 13 | sylib 218 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ≠ ∅) |
| 15 | | simpr 484 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 16 | | suprzcl2 12959 |
. . . . 5
⊢ ((ran
𝐹 ⊆ ℤ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 17 | 8, 14, 15, 16 | syl3anc 1373 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 18 | 6, 17 | sseldd 3964 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℕ0) |
| 19 | 1 | hashbc0 17030 |
. . . . . . 7
⊢ (𝑠 ∈ V → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
| 20 | 19 | elv 3469 |
. . . . . 6
⊢ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
| 21 | 20 | feq2i 6703 |
. . . . 5
⊢ (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 ↔ 𝑓:{∅}⟶𝑅) |
| 22 | 21 | biimpi 216 |
. . . 4
⊢ (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 → 𝑓:{∅}⟶𝑅) |
| 23 | | simprr 772 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑓:{∅}⟶𝑅) |
| 24 | | 0ex 5282 |
. . . . . . 7
⊢ ∅
∈ V |
| 25 | 24 | snid 4643 |
. . . . . 6
⊢ ∅
∈ {∅} |
| 26 | | ffvelcdm 7076 |
. . . . . 6
⊢ ((𝑓:{∅}⟶𝑅 ∧ ∅ ∈ {∅})
→ (𝑓‘∅)
∈ 𝑅) |
| 27 | 23, 25, 26 | sylancl 586 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ 𝑅) |
| 28 | | vex 3468 |
. . . . . . 7
⊢ 𝑠 ∈ V |
| 29 | 28 | pwid 4602 |
. . . . . 6
⊢ 𝑠 ∈ 𝒫 𝑠 |
| 30 | 29 | a1i 11 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑠 ∈ 𝒫 𝑠) |
| 31 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹:𝑅⟶ℕ0) |
| 32 | 31, 27 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℕ0) |
| 33 | 32 | nn0red 12568 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℝ) |
| 34 | 33 | rexrd 11290 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℝ*) |
| 35 | 18 | nn0red 12568 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
| 36 | 35 | rexrd 11290 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ*) |
| 37 | 36 | adantr 480 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ∈
ℝ*) |
| 38 | | hashxrcl 14380 |
. . . . . . 7
⊢ (𝑠 ∈ V →
(♯‘𝑠) ∈
ℝ*) |
| 39 | 28, 38 | mp1i 13 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (♯‘𝑠) ∈
ℝ*) |
| 40 | 8 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ran 𝐹 ⊆ ℤ) |
| 41 | 15 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 42 | 31 | ffnd 6712 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹 Fn 𝑅) |
| 43 | | fnfvelrn 7075 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝑅 ∧ (𝑓‘∅) ∈ 𝑅) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) |
| 44 | 42, 27, 43 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) |
| 45 | | suprzub 12960 |
. . . . . . 7
⊢ ((ran
𝐹 ⊆ ℤ ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ∧ (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, <
)) |
| 46 | 40, 41, 44, 45 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, <
)) |
| 47 | | simprl 770 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠)) |
| 48 | 34, 37, 39, 46, 47 | xrletrd 13183 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠)) |
| 49 | 25 | a1i 11 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈
{∅}) |
| 50 | | fvex 6894 |
. . . . . . . 8
⊢ (𝑓‘∅) ∈
V |
| 51 | 50 | snid 4643 |
. . . . . . 7
⊢ (𝑓‘∅) ∈ {(𝑓‘∅)} |
| 52 | 51 | a1i 11 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ {(𝑓‘∅)}) |
| 53 | | ffn 6711 |
. . . . . . 7
⊢ (𝑓:{∅}⟶𝑅 → 𝑓 Fn {∅}) |
| 54 | | elpreima 7053 |
. . . . . . 7
⊢ (𝑓 Fn {∅} → (∅
∈ (◡𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈
{∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)}))) |
| 55 | 23, 53, 54 | 3syl 18 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (∅ ∈ (◡𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈
{∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)}))) |
| 56 | 49, 52, 55 | mpbir2and 713 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})) |
| 57 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑐 = (𝑓‘∅) → (𝐹‘𝑐) = (𝐹‘(𝑓‘∅))) |
| 58 | 57 | breq1d 5134 |
. . . . . . 7
⊢ (𝑐 = (𝑓‘∅) → ((𝐹‘𝑐) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧))) |
| 59 | 1 | hashbc0 17030 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
| 60 | 59 | elv 3469 |
. . . . . . . . . 10
⊢ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
| 61 | 60 | sseq1i 3992 |
. . . . . . . . 9
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ {∅} ⊆ (◡𝑓 “ {𝑐})) |
| 62 | 24 | snss 4766 |
. . . . . . . . 9
⊢ (∅
∈ (◡𝑓 “ {𝑐}) ↔ {∅} ⊆ (◡𝑓 “ {𝑐})) |
| 63 | 61, 62 | bitr4i 278 |
. . . . . . . 8
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {𝑐})) |
| 64 | | sneq 4616 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑓‘∅) → {𝑐} = {(𝑓‘∅)}) |
| 65 | 64 | imaeq2d 6052 |
. . . . . . . . 9
⊢ (𝑐 = (𝑓‘∅) → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {(𝑓‘∅)})) |
| 66 | 65 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑐 = (𝑓‘∅) → (∅ ∈ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) |
| 67 | 63, 66 | bitrid 283 |
. . . . . . 7
⊢ (𝑐 = (𝑓‘∅) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) |
| 68 | 58, 67 | anbi12d 632 |
. . . . . 6
⊢ (𝑐 = (𝑓‘∅) → (((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})))) |
| 69 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑧 = 𝑠 → (♯‘𝑧) = (♯‘𝑠)) |
| 70 | 69 | breq2d 5136 |
. . . . . . 7
⊢ (𝑧 = 𝑠 → ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠))) |
| 71 | 70 | anbi1d 631 |
. . . . . 6
⊢ (𝑧 = 𝑠 → (((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})))) |
| 72 | 68, 71 | rspc2ev 3619 |
. . . . 5
⊢ (((𝑓‘∅) ∈ 𝑅 ∧ 𝑠 ∈ 𝒫 𝑠 ∧ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
| 73 | 27, 30, 48, 56, 72 | syl112anc 1376 |
. . . 4
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
| 74 | 22, 73 | sylanr2 683 |
. . 3
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
| 75 | 1, 3, 4, 5, 18, 74 | ramub 17038 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < )) |
| 76 | | ffn 6711 |
. . . . 5
⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) |
| 77 | | fvelrnb 6944 |
. . . . 5
⊢ (𝐹 Fn 𝑅 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ))) |
| 78 | 5, 76, 77 | 3syl 18 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ))) |
| 79 | 17, 78 | mpbid 232 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < )) |
| 80 | 2 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 0 ∈
ℕ0) |
| 81 | | simpll1 1213 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝑅 ∈ 𝑉) |
| 82 | | simpll3 1215 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝐹:𝑅⟶ℕ0) |
| 83 | | nnm1nn0 12547 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑐) ∈ ℕ → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
| 84 | 83 | ad2antll 729 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
| 85 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
| 86 | 24, 85 | f1osn 6863 |
. . . . . . . . . . . 12
⊢
{〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} |
| 87 | | f1of 6823 |
. . . . . . . . . . . 12
⊢
({〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} → {〈∅, 𝑐〉}:{∅}⟶{𝑐}) |
| 88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . 11
⊢
{〈∅, 𝑐〉}:{∅}⟶{𝑐} |
| 89 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝑐 ∈ 𝑅) |
| 90 | 89 | snssd 4790 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {𝑐} ⊆ 𝑅) |
| 91 | | fss 6727 |
. . . . . . . . . . 11
⊢
(({〈∅, 𝑐〉}:{∅}⟶{𝑐} ∧ {𝑐} ⊆ 𝑅) → {〈∅, 𝑐〉}:{∅}⟶𝑅) |
| 92 | 88, 90, 91 | sylancr 587 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {〈∅,
𝑐〉}:{∅}⟶𝑅) |
| 93 | | ovex 7443 |
. . . . . . . . . . . 12
⊢
(1...((𝐹‘𝑐) − 1)) ∈
V |
| 94 | 1 | hashbc0 17030 |
. . . . . . . . . . . 12
⊢
((1...((𝐹‘𝑐) − 1)) ∈ V → ((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
| 95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
| 96 | 95 | feq2i 6703 |
. . . . . . . . . 10
⊢
({〈∅, 𝑐〉}:((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 ↔ {〈∅, 𝑐〉}:{∅}⟶𝑅) |
| 97 | 92, 96 | sylibr 234 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {〈∅,
𝑐〉}:((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅) |
| 98 | 60 | sseq1i 3992 |
. . . . . . . . . . 11
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ {∅} ⊆ (◡{〈∅, 𝑐〉} “ {𝑑})) |
| 99 | 24 | snss 4766 |
. . . . . . . . . . 11
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ {∅} ⊆
(◡{〈∅, 𝑐〉} “ {𝑑})) |
| 100 | 98, 99 | bitr4i 278 |
. . . . . . . . . 10
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ ∅ ∈ (◡{〈∅, 𝑐〉} “ {𝑑})) |
| 101 | | fzfid 13996 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (1...((𝐹‘𝑐) − 1)) ∈ Fin) |
| 102 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ⊆ (1...((𝐹‘𝑐) − 1))) |
| 103 | | ssdomg 9019 |
. . . . . . . . . . . . . . 15
⊢
((1...((𝐹‘𝑐) − 1)) ∈ Fin → (𝑧 ⊆ (1...((𝐹‘𝑐) − 1)) → 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
| 104 | 101, 102,
103 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ≼ (1...((𝐹‘𝑐) − 1))) |
| 105 | 101, 102 | ssfid 9278 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ∈ Fin) |
| 106 | | hashdom 14402 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ Fin ∧ (1...((𝐹‘𝑐) − 1)) ∈ Fin) →
((♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
| 107 | 105, 101,
106 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
| 108 | 104, 107 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1)))) |
| 109 | 84 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
| 110 | | hashfz1 14369 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑐) − 1) ∈ ℕ0
→ (♯‘(1...((𝐹‘𝑐) − 1))) = ((𝐹‘𝑐) − 1)) |
| 111 | 109, 110 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) →
(♯‘(1...((𝐹‘𝑐) − 1))) = ((𝐹‘𝑐) − 1)) |
| 112 | 108, 111 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1)) |
| 113 | | hashcl 14379 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Fin →
(♯‘𝑧) ∈
ℕ0) |
| 114 | 105, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ∈
ℕ0) |
| 115 | 5 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (𝐹‘𝑐) ∈
ℕ0) |
| 116 | 115 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (𝐹‘𝑐) ∈
ℕ0) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (𝐹‘𝑐) ∈
ℕ0) |
| 118 | | nn0ltlem1 12658 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑧)
∈ ℕ0 ∧ (𝐹‘𝑐) ∈ ℕ0) →
((♯‘𝑧) <
(𝐹‘𝑐) ↔ (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1))) |
| 119 | 114, 117,
118 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((♯‘𝑧) < (𝐹‘𝑐) ↔ (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1))) |
| 120 | 112, 119 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) < (𝐹‘𝑐)) |
| 121 | 24, 85 | fvsn 7178 |
. . . . . . . . . . . . . . 15
⊢
({〈∅, 𝑐〉}‘∅) = 𝑐 |
| 122 | | f1ofn 6824 |
. . . . . . . . . . . . . . . . 17
⊢
({〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} → {〈∅, 𝑐〉} Fn {∅}) |
| 123 | | elpreima 7053 |
. . . . . . . . . . . . . . . . 17
⊢
({〈∅, 𝑐〉} Fn {∅} → (∅ ∈
(◡{〈∅, 𝑐〉} “ {𝑑}) ↔ (∅ ∈ {∅} ∧
({〈∅, 𝑐〉}‘∅) ∈ {𝑑}))) |
| 124 | 86, 122, 123 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ (∅ ∈
{∅} ∧ ({〈∅, 𝑐〉}‘∅) ∈ {𝑑})) |
| 125 | 124 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → ({〈∅, 𝑐〉}‘∅) ∈
{𝑑}) |
| 126 | 121, 125 | eqeltrrid 2840 |
. . . . . . . . . . . . . 14
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → 𝑐 ∈ {𝑑}) |
| 127 | | elsni 4623 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ {𝑑} → 𝑐 = 𝑑) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . . . . . 13
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → 𝑐 = 𝑑) |
| 129 | 128 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → (𝐹‘𝑐) = (𝐹‘𝑑)) |
| 130 | 129 | breq2d 5136 |
. . . . . . . . . . 11
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → ((♯‘𝑧) < (𝐹‘𝑐) ↔ (♯‘𝑧) < (𝐹‘𝑑))) |
| 131 | 120, 130 | syl5ibcom 245 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (∅ ∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → (♯‘𝑧) < (𝐹‘𝑑))) |
| 132 | 100, 131 | biimtrid 242 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) → (♯‘𝑧) < (𝐹‘𝑑))) |
| 133 | 1, 80, 81, 82, 84, 97, 132 | ramlb 17044 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹)) |
| 134 | | ramubcl 17043 |
. . . . . . . . . . 11
⊢ (((0
∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (sup(ran
𝐹, ℝ, < ) ∈
ℕ0 ∧ (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ))) → (0 Ramsey 𝐹) ∈
ℕ0) |
| 135 | 3, 4, 5, 18, 75, 134 | syl32anc 1380 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ∈
ℕ0) |
| 136 | 135 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (0 Ramsey 𝐹) ∈
ℕ0) |
| 137 | | nn0lem1lt 12663 |
. . . . . . . . 9
⊢ (((𝐹‘𝑐) ∈ ℕ0 ∧ (0 Ramsey
𝐹) ∈
ℕ0) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹))) |
| 138 | 116, 136,
137 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹))) |
| 139 | 133, 138 | mpbird 257 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹)) |
| 140 | 139 | expr 456 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) ∈ ℕ → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹))) |
| 141 | 135 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (0 Ramsey 𝐹) ∈
ℕ0) |
| 142 | 141 | nn0ge0d 12570 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → 0 ≤ (0 Ramsey 𝐹)) |
| 143 | | breq1 5127 |
. . . . . . 7
⊢ ((𝐹‘𝑐) = 0 → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ 0 ≤ (0 Ramsey 𝐹))) |
| 144 | 142, 143 | syl5ibrcom 247 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) = 0 → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹))) |
| 145 | | elnn0 12508 |
. . . . . . 7
⊢ ((𝐹‘𝑐) ∈ ℕ0 ↔ ((𝐹‘𝑐) ∈ ℕ ∨ (𝐹‘𝑐) = 0)) |
| 146 | 115, 145 | sylib 218 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) ∈ ℕ ∨ (𝐹‘𝑐) = 0)) |
| 147 | 140, 144,
146 | mpjaod 860 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹)) |
| 148 | | breq1 5127 |
. . . . 5
⊢ ((𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹))) |
| 149 | 147, 148 | syl5ibcom 245 |
. . . 4
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹))) |
| 150 | 149 | rexlimdva 3142 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹))) |
| 151 | 79, 150 | mpd 15 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹)) |
| 152 | 135 | nn0red 12568 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ∈ ℝ) |
| 153 | 152, 35 | letri3d 11382 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ((0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ) ↔ ((0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ) ∧ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹)))) |
| 154 | 75, 151, 153 | mpbir2and 713 |
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |