Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
2 | | 0nn0 12248 |
. . . 4
⊢ 0 ∈
ℕ0 |
3 | 2 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 0 ∈
ℕ0) |
4 | | simpl1 1190 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝑅 ∈ 𝑉) |
5 | | simpl3 1192 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝐹:𝑅⟶ℕ0) |
6 | 5 | frnd 6608 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ⊆
ℕ0) |
7 | | nn0ssz 12341 |
. . . . . 6
⊢
ℕ0 ⊆ ℤ |
8 | 6, 7 | sstrdi 3933 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ⊆ ℤ) |
9 | 5 | fdmd 6611 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → dom 𝐹 = 𝑅) |
10 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → 𝑅 ≠ ∅) |
11 | 9, 10 | eqnetrd 3011 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → dom 𝐹 ≠ ∅) |
12 | | dm0rn0 5834 |
. . . . . . 7
⊢ (dom
𝐹 = ∅ ↔ ran
𝐹 =
∅) |
13 | 12 | necon3bii 2996 |
. . . . . 6
⊢ (dom
𝐹 ≠ ∅ ↔ ran
𝐹 ≠
∅) |
14 | 11, 13 | sylib 217 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ran 𝐹 ≠ ∅) |
15 | | simpr 485 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
16 | | suprzcl2 12678 |
. . . . 5
⊢ ((ran
𝐹 ⊆ ℤ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
17 | 8, 14, 15, 16 | syl3anc 1370 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
18 | 6, 17 | sseldd 3922 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℕ0) |
19 | 1 | hashbc0 16706 |
. . . . . . 7
⊢ (𝑠 ∈ V → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
20 | 19 | elv 3438 |
. . . . . 6
⊢ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
21 | 20 | feq2i 6592 |
. . . . 5
⊢ (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 ↔ 𝑓:{∅}⟶𝑅) |
22 | 21 | biimpi 215 |
. . . 4
⊢ (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 → 𝑓:{∅}⟶𝑅) |
23 | | simprr 770 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑓:{∅}⟶𝑅) |
24 | | 0ex 5231 |
. . . . . . 7
⊢ ∅
∈ V |
25 | 24 | snid 4597 |
. . . . . 6
⊢ ∅
∈ {∅} |
26 | | ffvelrn 6959 |
. . . . . 6
⊢ ((𝑓:{∅}⟶𝑅 ∧ ∅ ∈ {∅})
→ (𝑓‘∅)
∈ 𝑅) |
27 | 23, 25, 26 | sylancl 586 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ 𝑅) |
28 | | vex 3436 |
. . . . . . 7
⊢ 𝑠 ∈ V |
29 | 28 | pwid 4557 |
. . . . . 6
⊢ 𝑠 ∈ 𝒫 𝑠 |
30 | 29 | a1i 11 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑠 ∈ 𝒫 𝑠) |
31 | 5 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹:𝑅⟶ℕ0) |
32 | 31, 27 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℕ0) |
33 | 32 | nn0red 12294 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℝ) |
34 | 33 | rexrd 11025 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈
ℝ*) |
35 | 18 | nn0red 12294 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
36 | 35 | rexrd 11025 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ*) |
37 | 36 | adantr 481 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ∈
ℝ*) |
38 | | hashxrcl 14072 |
. . . . . . 7
⊢ (𝑠 ∈ V →
(♯‘𝑠) ∈
ℝ*) |
39 | 28, 38 | mp1i 13 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (♯‘𝑠) ∈
ℝ*) |
40 | 8 | adantr 481 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ran 𝐹 ⊆ ℤ) |
41 | 15 | adantr 481 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
42 | 31 | ffnd 6601 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹 Fn 𝑅) |
43 | | fnfvelrn 6958 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝑅 ∧ (𝑓‘∅) ∈ 𝑅) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) |
44 | 42, 27, 43 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) |
45 | | suprzub 12679 |
. . . . . . 7
⊢ ((ran
𝐹 ⊆ ℤ ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ∧ (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, <
)) |
46 | 40, 41, 44, 45 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, <
)) |
47 | | simprl 768 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠)) |
48 | 34, 37, 39, 46, 47 | xrletrd 12896 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠)) |
49 | 25 | a1i 11 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈
{∅}) |
50 | | fvex 6787 |
. . . . . . . 8
⊢ (𝑓‘∅) ∈
V |
51 | 50 | snid 4597 |
. . . . . . 7
⊢ (𝑓‘∅) ∈ {(𝑓‘∅)} |
52 | 51 | a1i 11 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ {(𝑓‘∅)}) |
53 | | ffn 6600 |
. . . . . . 7
⊢ (𝑓:{∅}⟶𝑅 → 𝑓 Fn {∅}) |
54 | | elpreima 6935 |
. . . . . . 7
⊢ (𝑓 Fn {∅} → (∅
∈ (◡𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈
{∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)}))) |
55 | 23, 53, 54 | 3syl 18 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (∅ ∈ (◡𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈
{∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)}))) |
56 | 49, 52, 55 | mpbir2and 710 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})) |
57 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = (𝑓‘∅) → (𝐹‘𝑐) = (𝐹‘(𝑓‘∅))) |
58 | 57 | breq1d 5084 |
. . . . . . 7
⊢ (𝑐 = (𝑓‘∅) → ((𝐹‘𝑐) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧))) |
59 | 1 | hashbc0 16706 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
60 | 59 | elv 3438 |
. . . . . . . . . 10
⊢ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
61 | 60 | sseq1i 3949 |
. . . . . . . . 9
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ {∅} ⊆ (◡𝑓 “ {𝑐})) |
62 | 24 | snss 4719 |
. . . . . . . . 9
⊢ (∅
∈ (◡𝑓 “ {𝑐}) ↔ {∅} ⊆ (◡𝑓 “ {𝑐})) |
63 | 61, 62 | bitr4i 277 |
. . . . . . . 8
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {𝑐})) |
64 | | sneq 4571 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑓‘∅) → {𝑐} = {(𝑓‘∅)}) |
65 | 64 | imaeq2d 5969 |
. . . . . . . . 9
⊢ (𝑐 = (𝑓‘∅) → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {(𝑓‘∅)})) |
66 | 65 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑐 = (𝑓‘∅) → (∅ ∈ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) |
67 | 63, 66 | bitrid 282 |
. . . . . . 7
⊢ (𝑐 = (𝑓‘∅) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}) ↔ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) |
68 | 58, 67 | anbi12d 631 |
. . . . . 6
⊢ (𝑐 = (𝑓‘∅) → (((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})))) |
69 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 𝑠 → (♯‘𝑧) = (♯‘𝑠)) |
70 | 69 | breq2d 5086 |
. . . . . . 7
⊢ (𝑧 = 𝑠 → ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠))) |
71 | 70 | anbi1d 630 |
. . . . . 6
⊢ (𝑧 = 𝑠 → (((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)})))) |
72 | 68, 71 | rspc2ev 3572 |
. . . . 5
⊢ (((𝑓‘∅) ∈ 𝑅 ∧ 𝑠 ∈ 𝒫 𝑠 ∧ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (◡𝑓 “ {(𝑓‘∅)}))) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
73 | 27, 30, 48, 56, 72 | syl112anc 1373 |
. . . 4
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
74 | 22, 73 | sylanr2 680 |
. . 3
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡𝑓 “ {𝑐}))) |
75 | 1, 3, 4, 5, 18, 74 | ramub 16714 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < )) |
76 | | ffn 6600 |
. . . . 5
⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) |
77 | | fvelrnb 6830 |
. . . . 5
⊢ (𝐹 Fn 𝑅 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ))) |
78 | 5, 76, 77 | 3syl 18 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ))) |
79 | 17, 78 | mpbid 231 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < )) |
80 | 2 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 0 ∈
ℕ0) |
81 | | simpll1 1211 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝑅 ∈ 𝑉) |
82 | | simpll3 1213 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝐹:𝑅⟶ℕ0) |
83 | | nnm1nn0 12274 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑐) ∈ ℕ → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
84 | 83 | ad2antll 726 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
85 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
86 | 24, 85 | f1osn 6756 |
. . . . . . . . . . . 12
⊢
{〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} |
87 | | f1of 6716 |
. . . . . . . . . . . 12
⊢
({〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} → {〈∅, 𝑐〉}:{∅}⟶{𝑐}) |
88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . 11
⊢
{〈∅, 𝑐〉}:{∅}⟶{𝑐} |
89 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → 𝑐 ∈ 𝑅) |
90 | 89 | snssd 4742 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {𝑐} ⊆ 𝑅) |
91 | | fss 6617 |
. . . . . . . . . . 11
⊢
(({〈∅, 𝑐〉}:{∅}⟶{𝑐} ∧ {𝑐} ⊆ 𝑅) → {〈∅, 𝑐〉}:{∅}⟶𝑅) |
92 | 88, 90, 91 | sylancr 587 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {〈∅,
𝑐〉}:{∅}⟶𝑅) |
93 | | ovex 7308 |
. . . . . . . . . . . 12
⊢
(1...((𝐹‘𝑐) − 1)) ∈
V |
94 | 1 | hashbc0 16706 |
. . . . . . . . . . . 12
⊢
((1...((𝐹‘𝑐) − 1)) ∈ V → ((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅} |
96 | 95 | feq2i 6592 |
. . . . . . . . . 10
⊢
({〈∅, 𝑐〉}:((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 ↔ {〈∅, 𝑐〉}:{∅}⟶𝑅) |
97 | 92, 96 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → {〈∅,
𝑐〉}:((1...((𝐹‘𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅) |
98 | 60 | sseq1i 3949 |
. . . . . . . . . . 11
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ {∅} ⊆ (◡{〈∅, 𝑐〉} “ {𝑑})) |
99 | 24 | snss 4719 |
. . . . . . . . . . 11
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ {∅} ⊆
(◡{〈∅, 𝑐〉} “ {𝑑})) |
100 | 98, 99 | bitr4i 277 |
. . . . . . . . . 10
⊢ ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ ∅ ∈ (◡{〈∅, 𝑐〉} “ {𝑑})) |
101 | | fzfid 13693 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (1...((𝐹‘𝑐) − 1)) ∈ Fin) |
102 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ⊆ (1...((𝐹‘𝑐) − 1))) |
103 | | ssdomg 8786 |
. . . . . . . . . . . . . . 15
⊢
((1...((𝐹‘𝑐) − 1)) ∈ Fin → (𝑧 ⊆ (1...((𝐹‘𝑐) − 1)) → 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
104 | 101, 102,
103 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ≼ (1...((𝐹‘𝑐) − 1))) |
105 | 101, 102 | ssfid 9042 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → 𝑧 ∈ Fin) |
106 | | hashdom 14094 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ Fin ∧ (1...((𝐹‘𝑐) − 1)) ∈ Fin) →
((♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
107 | 105, 101,
106 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹‘𝑐) − 1)))) |
108 | 104, 107 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ≤
(♯‘(1...((𝐹‘𝑐) − 1)))) |
109 | 84 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((𝐹‘𝑐) − 1) ∈
ℕ0) |
110 | | hashfz1 14060 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑐) − 1) ∈ ℕ0
→ (♯‘(1...((𝐹‘𝑐) − 1))) = ((𝐹‘𝑐) − 1)) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) →
(♯‘(1...((𝐹‘𝑐) − 1))) = ((𝐹‘𝑐) − 1)) |
112 | 108, 111 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1)) |
113 | | hashcl 14071 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Fin →
(♯‘𝑧) ∈
ℕ0) |
114 | 105, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) ∈
ℕ0) |
115 | 5 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (𝐹‘𝑐) ∈
ℕ0) |
116 | 115 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (𝐹‘𝑐) ∈
ℕ0) |
117 | 116 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (𝐹‘𝑐) ∈
ℕ0) |
118 | | nn0ltlem1 12380 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑧)
∈ ℕ0 ∧ (𝐹‘𝑐) ∈ ℕ0) →
((♯‘𝑧) <
(𝐹‘𝑐) ↔ (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1))) |
119 | 114, 117,
118 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((♯‘𝑧) < (𝐹‘𝑐) ↔ (♯‘𝑧) ≤ ((𝐹‘𝑐) − 1))) |
120 | 112, 119 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (♯‘𝑧) < (𝐹‘𝑐)) |
121 | 24, 85 | fvsn 7053 |
. . . . . . . . . . . . . . 15
⊢
({〈∅, 𝑐〉}‘∅) = 𝑐 |
122 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . 17
⊢
({〈∅, 𝑐〉}:{∅}–1-1-onto→{𝑐} → {〈∅, 𝑐〉} Fn {∅}) |
123 | | elpreima 6935 |
. . . . . . . . . . . . . . . . 17
⊢
({〈∅, 𝑐〉} Fn {∅} → (∅ ∈
(◡{〈∅, 𝑐〉} “ {𝑑}) ↔ (∅ ∈ {∅} ∧
({〈∅, 𝑐〉}‘∅) ∈ {𝑑}))) |
124 | 86, 122, 123 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) ↔ (∅ ∈
{∅} ∧ ({〈∅, 𝑐〉}‘∅) ∈ {𝑑})) |
125 | 124 | simprbi 497 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → ({〈∅, 𝑐〉}‘∅) ∈
{𝑑}) |
126 | 121, 125 | eqeltrrid 2844 |
. . . . . . . . . . . . . 14
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → 𝑐 ∈ {𝑑}) |
127 | | elsni 4578 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ {𝑑} → 𝑐 = 𝑑) |
128 | 126, 127 | syl 17 |
. . . . . . . . . . . . 13
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → 𝑐 = 𝑑) |
129 | 128 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → (𝐹‘𝑐) = (𝐹‘𝑑)) |
130 | 129 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (∅
∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → ((♯‘𝑧) < (𝐹‘𝑐) ↔ (♯‘𝑧) < (𝐹‘𝑑))) |
131 | 120, 130 | syl5ibcom 244 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → (∅ ∈ (◡{〈∅, 𝑐〉} “ {𝑑}) → (♯‘𝑧) < (𝐹‘𝑑))) |
132 | 100, 131 | syl5bi 241 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) ∧ (𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ (1...((𝐹‘𝑐) − 1)))) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (◡{〈∅, 𝑐〉} “ {𝑑}) → (♯‘𝑧) < (𝐹‘𝑑))) |
133 | 1, 80, 81, 82, 84, 97, 132 | ramlb 16720 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹)) |
134 | | ramubcl 16719 |
. . . . . . . . . . 11
⊢ (((0
∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (sup(ran
𝐹, ℝ, < ) ∈
ℕ0 ∧ (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ))) → (0 Ramsey 𝐹) ∈
ℕ0) |
135 | 3, 4, 5, 18, 75, 134 | syl32anc 1377 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ∈
ℕ0) |
136 | 135 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (0 Ramsey 𝐹) ∈
ℕ0) |
137 | | nn0lem1lt 12385 |
. . . . . . . . 9
⊢ (((𝐹‘𝑐) ∈ ℕ0 ∧ (0 Ramsey
𝐹) ∈
ℕ0) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹))) |
138 | 116, 136,
137 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹‘𝑐) − 1) < (0 Ramsey 𝐹))) |
139 | 133, 138 | mpbird 256 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝑐 ∈ 𝑅 ∧ (𝐹‘𝑐) ∈ ℕ)) → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹)) |
140 | 139 | expr 457 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) ∈ ℕ → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹))) |
141 | 135 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (0 Ramsey 𝐹) ∈
ℕ0) |
142 | 141 | nn0ge0d 12296 |
. . . . . . 7
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → 0 ≤ (0 Ramsey 𝐹)) |
143 | | breq1 5077 |
. . . . . . 7
⊢ ((𝐹‘𝑐) = 0 → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ 0 ≤ (0 Ramsey 𝐹))) |
144 | 142, 143 | syl5ibrcom 246 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) = 0 → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹))) |
145 | | elnn0 12235 |
. . . . . . 7
⊢ ((𝐹‘𝑐) ∈ ℕ0 ↔ ((𝐹‘𝑐) ∈ ℕ ∨ (𝐹‘𝑐) = 0)) |
146 | 115, 145 | sylib 217 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) ∈ ℕ ∨ (𝐹‘𝑐) = 0)) |
147 | 140, 144,
146 | mpjaod 857 |
. . . . 5
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → (𝐹‘𝑐) ≤ (0 Ramsey 𝐹)) |
148 | | breq1 5077 |
. . . . 5
⊢ ((𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → ((𝐹‘𝑐) ≤ (0 Ramsey 𝐹) ↔ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹))) |
149 | 147, 148 | syl5ibcom 244 |
. . . 4
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ 𝑐 ∈ 𝑅) → ((𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹))) |
150 | 149 | rexlimdva 3213 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (∃𝑐 ∈ 𝑅 (𝐹‘𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹))) |
151 | 79, 150 | mpd 15 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹)) |
152 | 135 | nn0red 12294 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) ∈ ℝ) |
153 | 152, 35 | letri3d 11117 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → ((0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ) ↔ ((0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ) ∧ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey
𝐹)))) |
154 | 75, 151, 153 | mpbir2and 710 |
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧
∃𝑥 ∈ ℤ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |