MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsub Structured version   Visualization version   GIF version

Theorem expsub 13517
Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expsub (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))

Proof of Theorem expsub
StepHypRef Expression
1 znegcl 12046 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 expaddz 13513 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴𝑀) · (𝐴↑-𝑁)))
31, 2sylanr2 683 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴𝑀) · (𝐴↑-𝑁)))
4 zcn 12015 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 zcn 12015 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6 negsub 10962 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
74, 5, 6syl2an 599 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
87adantl 486 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 + -𝑁) = (𝑀𝑁))
98oveq2d 7164 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = (𝐴↑(𝑀𝑁)))
10 expnegz 13503 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
11103expa 1116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
1211adantrl 716 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
1312oveq2d 7164 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴𝑀) · (𝐴↑-𝑁)) = ((𝐴𝑀) · (1 / (𝐴𝑁))))
14 expclz 13494 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℂ)
15143expa 1116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℂ)
1615adantrr 717 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴𝑀) ∈ ℂ)
17 expclz 13494 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
18173expa 1116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
1918adantrl 716 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴𝑁) ∈ ℂ)
20 expne0i 13501 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
21203expa 1116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
2221adantrl 716 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴𝑁) ≠ 0)
2316, 19, 22divrecd 11447 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴𝑀) / (𝐴𝑁)) = ((𝐴𝑀) · (1 / (𝐴𝑁))))
2413, 23eqtr4d 2797 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴𝑀) · (𝐴↑-𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
253, 9, 243eqtr3d 2802 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2952  (class class class)co 7148  cc 10563  0cc0 10565  1c1 10566   + caddc 10568   · cmul 10570  cmin 10898  -cneg 10899   / cdiv 11325  cz 12010  cexp 13469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-n0 11925  df-z 12011  df-uz 12273  df-seq 13409  df-exp 13470
This theorem is referenced by:  expm1  13519  expsubd  13561  ltexp2a  13570  leexp2a  13576  iexpcyc  13609  expmulnbnd  13636  dvdsprmpweqle  16267  m1expaddsub  18683  psgnuni  18684  aaliou3lem8  25030  hgt750lem  32140  fmtnoprmfac2lem1  44441  digexp  45376  dignn0flhalflem1  45384
  Copyright terms: Public domain W3C validator