MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoid Structured version   Visualization version   GIF version

Theorem nmoid 24658
Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoid.1 𝑁 = (𝑆 normOp 𝑆)
nmoid.2 𝑉 = (Base‘𝑆)
nmoid.3 0 = (0g𝑆)
Assertion
Ref Expression
nmoid ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)

Proof of Theorem nmoid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoid.1 . . 3 𝑁 = (𝑆 normOp 𝑆)
2 nmoid.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2731 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 nmoid.3 . . 3 0 = (0g𝑆)
5 simpl 482 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ NrmGrp)
6 ngpgrp 24515 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
76adantr 480 . . . 4 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ Grp)
82idghm 19144 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
97, 8syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
10 1red 11113 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ∈ ℝ)
11 0le1 11640 . . . 4 0 ≤ 1
1211a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ 1)
132, 3nmcl 24532 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1413ad2ant2r 747 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1514leidd 11683 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ≤ ((norm‘𝑆)‘𝑥))
16 fvresi 7107 . . . . . 6 (𝑥𝑉 → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1716ad2antrl 728 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1817fveq2d 6826 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) = ((norm‘𝑆)‘𝑥))
1914recnd 11140 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2019mullidd 11130 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘𝑥))
2115, 18, 203brtr4d 5123 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ (1 · ((norm‘𝑆)‘𝑥)))
221, 2, 3, 3, 4, 5, 5, 9, 10, 12, 21nmolb2d 24634 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ≤ 1)
23 pssnel 4421 . . . 4 ({ 0 } ⊊ 𝑉 → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
2423adantl 481 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
25 velsn 4592 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2625biimpri 228 . . . . 5 (𝑥 = 0𝑥 ∈ { 0 })
2726necon3bi 2954 . . . 4 𝑥 ∈ { 0 } → 𝑥0 )
2820, 18eqtr4d 2769 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)))
291nmocl 24636 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
305, 5, 9, 29syl3anc 1373 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
311nmoge0 24637 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
325, 5, 9, 31syl3anc 1373 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
33 xrrege0 13073 . . . . . . . . 9 ((((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑁‘( I ↾ 𝑉)) ∧ (𝑁‘( I ↾ 𝑉)) ≤ 1)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
3430, 10, 32, 22, 33syl22anc 838 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
351isnghm2 24640 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
365, 5, 9, 35syl3anc 1373 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
3734, 36mpbird 257 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
38 simprl 770 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
391, 2, 3, 3nmoi 24644 . . . . . . 7 ((( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ∧ 𝑥𝑉) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4037, 38, 39syl2an2r 685 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4128, 40eqbrtrd 5113 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
42 1red 11113 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ∈ ℝ)
4334adantr 480 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
442, 3, 4nmrpcl 24536 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
45443expb 1120 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4645adantlr 715 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4742, 43, 46lemul1d 12977 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 ≤ (𝑁‘( I ↾ 𝑉)) ↔ (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥))))
4841, 47mpbird 257 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
4927, 48sylanr2 683 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 })) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5024, 49exlimddv 1936 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
51 1xr 11171 . . 3 1 ∈ ℝ*
52 xrletri3 13053 . . 3 (((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5330, 51, 52sylancl 586 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5422, 50, 53mpbir2and 713 1 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wpss 3903  {csn 4576   class class class wbr 5091   I cid 5510  cres 5618  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145  cle 11147  +crp 12890  Basecbs 17120  0gc0g 17343  Grpcgrp 18846   GrpHom cghm 19125  normcnm 24492  NrmGrpcngp 24493   normOp cnmo 24621   NGHom cnghm 24622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-0g 17345  df-topgen 17347  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-ghm 19126  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-xms 24236  df-ms 24237  df-nm 24498  df-ngp 24499  df-nmo 24624  df-nghm 24625
This theorem is referenced by:  idnghm  24659
  Copyright terms: Public domain W3C validator