MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoid Structured version   Visualization version   GIF version

Theorem nmoid 23906
Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoid.1 𝑁 = (𝑆 normOp 𝑆)
nmoid.2 𝑉 = (Base‘𝑆)
nmoid.3 0 = (0g𝑆)
Assertion
Ref Expression
nmoid ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)

Proof of Theorem nmoid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoid.1 . . 3 𝑁 = (𝑆 normOp 𝑆)
2 nmoid.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2738 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 nmoid.3 . . 3 0 = (0g𝑆)
5 simpl 483 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ NrmGrp)
6 ngpgrp 23755 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
76adantr 481 . . . 4 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ Grp)
82idghm 18849 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
97, 8syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
10 1red 10976 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ∈ ℝ)
11 0le1 11498 . . . 4 0 ≤ 1
1211a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ 1)
132, 3nmcl 23772 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1413ad2ant2r 744 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1514leidd 11541 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ≤ ((norm‘𝑆)‘𝑥))
16 fvresi 7045 . . . . . 6 (𝑥𝑉 → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1716ad2antrl 725 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1817fveq2d 6778 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) = ((norm‘𝑆)‘𝑥))
1914recnd 11003 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2019mulid2d 10993 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘𝑥))
2115, 18, 203brtr4d 5106 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ (1 · ((norm‘𝑆)‘𝑥)))
221, 2, 3, 3, 4, 5, 5, 9, 10, 12, 21nmolb2d 23882 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ≤ 1)
23 pssnel 4404 . . . 4 ({ 0 } ⊊ 𝑉 → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
2423adantl 482 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
25 velsn 4577 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2625biimpri 227 . . . . 5 (𝑥 = 0𝑥 ∈ { 0 })
2726necon3bi 2970 . . . 4 𝑥 ∈ { 0 } → 𝑥0 )
2820, 18eqtr4d 2781 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)))
291nmocl 23884 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
305, 5, 9, 29syl3anc 1370 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
311nmoge0 23885 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
325, 5, 9, 31syl3anc 1370 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
33 xrrege0 12908 . . . . . . . . 9 ((((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑁‘( I ↾ 𝑉)) ∧ (𝑁‘( I ↾ 𝑉)) ≤ 1)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
3430, 10, 32, 22, 33syl22anc 836 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
351isnghm2 23888 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
365, 5, 9, 35syl3anc 1370 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
3734, 36mpbird 256 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
38 simprl 768 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
391, 2, 3, 3nmoi 23892 . . . . . . 7 ((( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ∧ 𝑥𝑉) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4037, 38, 39syl2an2r 682 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4128, 40eqbrtrd 5096 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
42 1red 10976 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ∈ ℝ)
4334adantr 481 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
442, 3, 4nmrpcl 23776 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
45443expb 1119 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4645adantlr 712 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4742, 43, 46lemul1d 12815 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 ≤ (𝑁‘( I ↾ 𝑉)) ↔ (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥))))
4841, 47mpbird 256 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
4927, 48sylanr2 680 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 })) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5024, 49exlimddv 1938 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
51 1xr 11034 . . 3 1 ∈ ℝ*
52 xrletri3 12888 . . 3 (((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5330, 51, 52sylancl 586 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5422, 50, 53mpbir2and 710 1 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wpss 3888  {csn 4561   class class class wbr 5074   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008  cle 11010  +crp 12730  Basecbs 16912  0gc0g 17150  Grpcgrp 18577   GrpHom cghm 18831  normcnm 23732  NrmGrpcngp 23733   normOp cnmo 23869   NGHom cnghm 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ghm 18832  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nmo 23872  df-nghm 23873
This theorem is referenced by:  idnghm  23907
  Copyright terms: Public domain W3C validator