Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoid Structured version   Visualization version   GIF version

Theorem nmoid 23352
 Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoid.1 𝑁 = (𝑆 normOp 𝑆)
nmoid.2 𝑉 = (Base‘𝑆)
nmoid.3 0 = (0g𝑆)
Assertion
Ref Expression
nmoid ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)

Proof of Theorem nmoid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoid.1 . . 3 𝑁 = (𝑆 normOp 𝑆)
2 nmoid.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2801 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 nmoid.3 . . 3 0 = (0g𝑆)
5 simpl 486 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ NrmGrp)
6 ngpgrp 23209 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
76adantr 484 . . . 4 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ Grp)
82idghm 18369 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
97, 8syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
10 1red 10635 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ∈ ℝ)
11 0le1 11156 . . . 4 0 ≤ 1
1211a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ 1)
132, 3nmcl 23226 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1413ad2ant2r 746 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1514leidd 11199 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ≤ ((norm‘𝑆)‘𝑥))
16 fvresi 6916 . . . . . 6 (𝑥𝑉 → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1716ad2antrl 727 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1817fveq2d 6653 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) = ((norm‘𝑆)‘𝑥))
1914recnd 10662 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2019mulid2d 10652 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘𝑥))
2115, 18, 203brtr4d 5065 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ (1 · ((norm‘𝑆)‘𝑥)))
221, 2, 3, 3, 4, 5, 5, 9, 10, 12, 21nmolb2d 23328 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ≤ 1)
23 pssnel 4381 . . . 4 ({ 0 } ⊊ 𝑉 → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
2423adantl 485 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
25 velsn 4544 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2625biimpri 231 . . . . 5 (𝑥 = 0𝑥 ∈ { 0 })
2726necon3bi 3016 . . . 4 𝑥 ∈ { 0 } → 𝑥0 )
2820, 18eqtr4d 2839 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)))
291nmocl 23330 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
305, 5, 9, 29syl3anc 1368 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
311nmoge0 23331 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
325, 5, 9, 31syl3anc 1368 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
33 xrrege0 12559 . . . . . . . . 9 ((((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑁‘( I ↾ 𝑉)) ∧ (𝑁‘( I ↾ 𝑉)) ≤ 1)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
3430, 10, 32, 22, 33syl22anc 837 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
351isnghm2 23334 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
365, 5, 9, 35syl3anc 1368 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
3734, 36mpbird 260 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
38 simprl 770 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
391, 2, 3, 3nmoi 23338 . . . . . . 7 ((( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ∧ 𝑥𝑉) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4037, 38, 39syl2an2r 684 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4128, 40eqbrtrd 5055 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
42 1red 10635 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ∈ ℝ)
4334adantr 484 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
442, 3, 4nmrpcl 23230 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
45443expb 1117 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4645adantlr 714 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4742, 43, 46lemul1d 12466 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 ≤ (𝑁‘( I ↾ 𝑉)) ↔ (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥))))
4841, 47mpbird 260 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
4927, 48sylanr2 682 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 })) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5024, 49exlimddv 1936 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
51 1xr 10693 . . 3 1 ∈ ℝ*
52 xrletri3 12539 . . 3 (((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5330, 51, 52sylancl 589 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5422, 50, 53mpbir2and 712 1 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990   ⊊ wpss 3885  {csn 4528   class class class wbr 5033   I cid 5427   ↾ cres 5525  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535  ℝ*cxr 10667   ≤ cle 10669  ℝ+crp 12381  Basecbs 16479  0gc0g 16709  Grpcgrp 18099   GrpHom cghm 18351  normcnm 23187  NrmGrpcngp 23188   normOp cnmo 23315   NGHom cnghm 23316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-0g 16711  df-topgen 16713  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-ghm 18352  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-xms 22931  df-ms 22932  df-nm 23193  df-ngp 23194  df-nmo 23318  df-nghm 23319 This theorem is referenced by:  idnghm  23353
 Copyright terms: Public domain W3C validator