MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoid Structured version   Visualization version   GIF version

Theorem nmoid 23594
Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoid.1 𝑁 = (𝑆 normOp 𝑆)
nmoid.2 𝑉 = (Base‘𝑆)
nmoid.3 0 = (0g𝑆)
Assertion
Ref Expression
nmoid ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)

Proof of Theorem nmoid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoid.1 . . 3 𝑁 = (𝑆 normOp 𝑆)
2 nmoid.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2736 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 nmoid.3 . . 3 0 = (0g𝑆)
5 simpl 486 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ NrmGrp)
6 ngpgrp 23451 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
76adantr 484 . . . 4 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ Grp)
82idghm 18591 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
97, 8syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
10 1red 10799 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ∈ ℝ)
11 0le1 11320 . . . 4 0 ≤ 1
1211a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ 1)
132, 3nmcl 23468 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1413ad2ant2r 747 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1514leidd 11363 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ≤ ((norm‘𝑆)‘𝑥))
16 fvresi 6966 . . . . . 6 (𝑥𝑉 → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1716ad2antrl 728 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1817fveq2d 6699 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) = ((norm‘𝑆)‘𝑥))
1914recnd 10826 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2019mulid2d 10816 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘𝑥))
2115, 18, 203brtr4d 5071 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ (1 · ((norm‘𝑆)‘𝑥)))
221, 2, 3, 3, 4, 5, 5, 9, 10, 12, 21nmolb2d 23570 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ≤ 1)
23 pssnel 4371 . . . 4 ({ 0 } ⊊ 𝑉 → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
2423adantl 485 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
25 velsn 4543 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2625biimpri 231 . . . . 5 (𝑥 = 0𝑥 ∈ { 0 })
2726necon3bi 2958 . . . 4 𝑥 ∈ { 0 } → 𝑥0 )
2820, 18eqtr4d 2774 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)))
291nmocl 23572 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
305, 5, 9, 29syl3anc 1373 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
311nmoge0 23573 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
325, 5, 9, 31syl3anc 1373 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
33 xrrege0 12729 . . . . . . . . 9 ((((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑁‘( I ↾ 𝑉)) ∧ (𝑁‘( I ↾ 𝑉)) ≤ 1)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
3430, 10, 32, 22, 33syl22anc 839 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
351isnghm2 23576 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
365, 5, 9, 35syl3anc 1373 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
3734, 36mpbird 260 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
38 simprl 771 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
391, 2, 3, 3nmoi 23580 . . . . . . 7 ((( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ∧ 𝑥𝑉) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4037, 38, 39syl2an2r 685 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4128, 40eqbrtrd 5061 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
42 1red 10799 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ∈ ℝ)
4334adantr 484 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
442, 3, 4nmrpcl 23472 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
45443expb 1122 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4645adantlr 715 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4742, 43, 46lemul1d 12636 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 ≤ (𝑁‘( I ↾ 𝑉)) ↔ (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥))))
4841, 47mpbird 260 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
4927, 48sylanr2 683 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 })) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5024, 49exlimddv 1943 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
51 1xr 10857 . . 3 1 ∈ ℝ*
52 xrletri3 12709 . . 3 (((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5330, 51, 52sylancl 589 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5422, 50, 53mpbir2and 713 1 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wne 2932  wpss 3854  {csn 4527   class class class wbr 5039   I cid 5439  cres 5538  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   · cmul 10699  *cxr 10831  cle 10833  +crp 12551  Basecbs 16666  0gc0g 16898  Grpcgrp 18319   GrpHom cghm 18573  normcnm 23428  NrmGrpcngp 23429   normOp cnmo 23557   NGHom cnghm 23558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-0g 16900  df-topgen 16902  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-ghm 18574  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-xms 23172  df-ms 23173  df-nm 23434  df-ngp 23435  df-nmo 23560  df-nghm 23561
This theorem is referenced by:  idnghm  23595
  Copyright terms: Public domain W3C validator