MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplvsca Structured version   Visualization version   GIF version

Theorem ressmplvsca 21384
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmplvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem ressmplvsca
StepHypRef Expression
1 ressmpl.u . . . . 5 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2738 . . . . 5 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . 5 𝐵 = (Base‘𝑈)
4 eqid 2738 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 21355 . . . 4 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3939 . . 3 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
7 eqid 2738 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
8 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
9 eqid 2738 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
10 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
117, 8, 2, 4, 9, 10resspsrvsca 21339 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
126, 11sylanr2 682 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
133fvexi 6854 . . . 4 𝐵 ∈ V
141, 2, 3mplval2 21354 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
15 eqid 2738 . . . . 5 ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘(𝐼 mPwSer 𝐻))
1614, 15ressvsca 17185 . . . 4 (𝐵 ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠𝑈))
1713, 16ax-mp 5 . . 3 ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠𝑈)
1817oveqi 7365 . 2 (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠𝑈)𝑌)
19 fvex 6853 . . . . 5 (Base‘𝑆) ∈ V
20 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
21 eqid 2738 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2220, 7, 21mplval2 21354 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
23 eqid 2738 . . . . . 6 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘(𝐼 mPwSer 𝑅))
2422, 23ressvsca 17185 . . . . 5 ((Base‘𝑆) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠𝑆))
2519, 24ax-mp 5 . . . 4 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠𝑆)
26 fvex 6853 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
279, 23ressvsca 17185 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
2826, 27ax-mp 5 . . . 4 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
29 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
30 eqid 2738 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3129, 30ressvsca 17185 . . . . 5 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3213, 31ax-mp 5 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑃)
3325, 28, 323eqtr3i 2774 . . 3 ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = ( ·𝑠𝑃)
3433oveqi 7365 . 2 (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋( ·𝑠𝑃)𝑌)
3512, 18, 343eqtr3g 2801 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cfv 6494  (class class class)co 7352  Basecbs 17043  s cress 17072   ·𝑠 cvsca 17097  SubRingcsubrg 20171   mPwSer cmps 21259   mPoly cmpl 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7610  df-om 7796  df-1st 7914  df-2nd 7915  df-supp 8086  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-fsupp 9265  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-nn 12113  df-2 12175  df-3 12176  df-4 12177  df-5 12178  df-6 12179  df-7 12180  df-8 12181  df-9 12182  df-n0 12373  df-z 12459  df-uz 12723  df-fz 13380  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-sca 17109  df-vsca 17110  df-tset 17112  df-subg 18884  df-ring 19920  df-subrg 20173  df-psr 21264  df-mpl 21266
This theorem is referenced by:  ressply1vsca  21555
  Copyright terms: Public domain W3C validator