| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmplvsca | Structured version Visualization version GIF version | ||
| Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
| ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
| ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
| ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| ressmplvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
| 3 | ressmpl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
| 5 | 1, 2, 3, 4 | mplbasss 21934 | . . . 4 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
| 6 | 5 | sseli 3925 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
| 7 | eqid 2731 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 8 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 9 | eqid 2731 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
| 10 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 11 | 7, 8, 2, 4, 9, 10 | resspsrvsca 21914 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
| 12 | 6, 11 | sylanr2 683 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
| 13 | 3 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 14 | 1, 2, 3 | mplval2 21933 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
| 15 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) | |
| 16 | 14, 15 | ressvsca 17248 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘𝑈)) |
| 17 | 13, 16 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘𝑈) |
| 18 | 17 | oveqi 7359 | . 2 ⊢ (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘𝑈)𝑌) |
| 19 | fvex 6835 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
| 20 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
| 21 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 22 | 20, 7, 21 | mplval2 21933 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
| 23 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) | |
| 24 | 22, 23 | ressvsca 17248 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘𝑆)) |
| 25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘𝑆) |
| 26 | fvex 6835 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
| 27 | 9, 23 | ressvsca 17248 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
| 28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
| 29 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 30 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 31 | 29, 30 | ressvsca 17248 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 32 | 13, 31 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃) |
| 33 | 25, 28, 32 | 3eqtr3i 2762 | . . 3 ⊢ ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = ( ·𝑠 ‘𝑃) |
| 34 | 33 | oveqi 7359 | . 2 ⊢ (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌) |
| 35 | 12, 18, 34 | 3eqtr3g 2789 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 ·𝑠 cvsca 17165 SubRingcsubrg 20484 mPwSer cmps 21841 mPoly cmpl 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-subg 19036 df-ring 20153 df-subrg 20485 df-psr 21846 df-mpl 21848 |
| This theorem is referenced by: ressply1vsca 22144 |
| Copyright terms: Public domain | W3C validator |