![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmplvsca | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | β’ π = (πΌ mPoly π ) |
ressmpl.h | β’ π» = (π βΎs π) |
ressmpl.u | β’ π = (πΌ mPoly π») |
ressmpl.b | β’ π΅ = (Baseβπ) |
ressmpl.1 | β’ (π β πΌ β π) |
ressmpl.2 | β’ (π β π β (SubRingβπ )) |
ressmpl.p | β’ π = (π βΎs π΅) |
Ref | Expression |
---|---|
ressmplvsca | β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.u | . . . . 5 β’ π = (πΌ mPoly π») | |
2 | eqid 2733 | . . . . 5 β’ (πΌ mPwSer π») = (πΌ mPwSer π») | |
3 | ressmpl.b | . . . . 5 β’ π΅ = (Baseβπ) | |
4 | eqid 2733 | . . . . 5 β’ (Baseβ(πΌ mPwSer π»)) = (Baseβ(πΌ mPwSer π»)) | |
5 | 1, 2, 3, 4 | mplbasss 21556 | . . . 4 β’ π΅ β (Baseβ(πΌ mPwSer π»)) |
6 | 5 | sseli 3979 | . . 3 β’ (π β π΅ β π β (Baseβ(πΌ mPwSer π»))) |
7 | eqid 2733 | . . . 4 β’ (πΌ mPwSer π ) = (πΌ mPwSer π ) | |
8 | ressmpl.h | . . . 4 β’ π» = (π βΎs π) | |
9 | eqid 2733 | . . . 4 β’ ((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))) = ((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))) | |
10 | ressmpl.2 | . . . 4 β’ (π β π β (SubRingβπ )) | |
11 | 7, 8, 2, 4, 9, 10 | resspsrvsca 21538 | . . 3 β’ ((π β§ (π β π β§ π β (Baseβ(πΌ mPwSer π»)))) β (π( Β·π β(πΌ mPwSer π»))π) = (π( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))))π)) |
12 | 6, 11 | sylanr2 682 | . 2 β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π β(πΌ mPwSer π»))π) = (π( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))))π)) |
13 | 3 | fvexi 6906 | . . . 4 β’ π΅ β V |
14 | 1, 2, 3 | mplval2 21555 | . . . . 5 β’ π = ((πΌ mPwSer π») βΎs π΅) |
15 | eqid 2733 | . . . . 5 β’ ( Β·π β(πΌ mPwSer π»)) = ( Β·π β(πΌ mPwSer π»)) | |
16 | 14, 15 | ressvsca 17289 | . . . 4 β’ (π΅ β V β ( Β·π β(πΌ mPwSer π»)) = ( Β·π βπ)) |
17 | 13, 16 | ax-mp 5 | . . 3 β’ ( Β·π β(πΌ mPwSer π»)) = ( Β·π βπ) |
18 | 17 | oveqi 7422 | . 2 β’ (π( Β·π β(πΌ mPwSer π»))π) = (π( Β·π βπ)π) |
19 | fvex 6905 | . . . . 5 β’ (Baseβπ) β V | |
20 | ressmpl.s | . . . . . . 7 β’ π = (πΌ mPoly π ) | |
21 | eqid 2733 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
22 | 20, 7, 21 | mplval2 21555 | . . . . . 6 β’ π = ((πΌ mPwSer π ) βΎs (Baseβπ)) |
23 | eqid 2733 | . . . . . 6 β’ ( Β·π β(πΌ mPwSer π )) = ( Β·π β(πΌ mPwSer π )) | |
24 | 22, 23 | ressvsca 17289 | . . . . 5 β’ ((Baseβπ) β V β ( Β·π β(πΌ mPwSer π )) = ( Β·π βπ)) |
25 | 19, 24 | ax-mp 5 | . . . 4 β’ ( Β·π β(πΌ mPwSer π )) = ( Β·π βπ) |
26 | fvex 6905 | . . . . 5 β’ (Baseβ(πΌ mPwSer π»)) β V | |
27 | 9, 23 | ressvsca 17289 | . . . . 5 β’ ((Baseβ(πΌ mPwSer π»)) β V β ( Β·π β(πΌ mPwSer π )) = ( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))))) |
28 | 26, 27 | ax-mp 5 | . . . 4 β’ ( Β·π β(πΌ mPwSer π )) = ( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»)))) |
29 | ressmpl.p | . . . . . 6 β’ π = (π βΎs π΅) | |
30 | eqid 2733 | . . . . . 6 β’ ( Β·π βπ) = ( Β·π βπ) | |
31 | 29, 30 | ressvsca 17289 | . . . . 5 β’ (π΅ β V β ( Β·π βπ) = ( Β·π βπ)) |
32 | 13, 31 | ax-mp 5 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) |
33 | 25, 28, 32 | 3eqtr3i 2769 | . . 3 β’ ( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»)))) = ( Β·π βπ) |
34 | 33 | oveqi 7422 | . 2 β’ (π( Β·π β((πΌ mPwSer π ) βΎs (Baseβ(πΌ mPwSer π»))))π) = (π( Β·π βπ)π) |
35 | 12, 18, 34 | 3eqtr3g 2796 | 1 β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 βcfv 6544 (class class class)co 7409 Basecbs 17144 βΎs cress 17173 Β·π cvsca 17201 SubRingcsubrg 20315 mPwSer cmps 21457 mPoly cmpl 21459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-subg 19003 df-ring 20058 df-subrg 20317 df-psr 21462 df-mpl 21464 |
This theorem is referenced by: ressply1vsca 21754 |
Copyright terms: Public domain | W3C validator |