MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplvsca Structured version   Visualization version   GIF version

Theorem ressmplvsca 21966
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmplvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem ressmplvsca
StepHypRef Expression
1 ressmpl.u . . . . 5 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2731 . . . . 5 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . 5 𝐵 = (Base‘𝑈)
4 eqid 2731 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 21934 . . . 4 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3925 . . 3 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
7 eqid 2731 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
8 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
9 eqid 2731 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
10 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
117, 8, 2, 4, 9, 10resspsrvsca 21914 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
126, 11sylanr2 683 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
133fvexi 6836 . . . 4 𝐵 ∈ V
141, 2, 3mplval2 21933 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
15 eqid 2731 . . . . 5 ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘(𝐼 mPwSer 𝐻))
1614, 15ressvsca 17248 . . . 4 (𝐵 ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠𝑈))
1713, 16ax-mp 5 . . 3 ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠𝑈)
1817oveqi 7359 . 2 (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠𝑈)𝑌)
19 fvex 6835 . . . . 5 (Base‘𝑆) ∈ V
20 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
21 eqid 2731 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2220, 7, 21mplval2 21933 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
23 eqid 2731 . . . . . 6 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘(𝐼 mPwSer 𝑅))
2422, 23ressvsca 17248 . . . . 5 ((Base‘𝑆) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠𝑆))
2519, 24ax-mp 5 . . . 4 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠𝑆)
26 fvex 6835 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
279, 23ressvsca 17248 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
2826, 27ax-mp 5 . . . 4 ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
29 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
30 eqid 2731 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3129, 30ressvsca 17248 . . . . 5 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3213, 31ax-mp 5 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑃)
3325, 28, 323eqtr3i 2762 . . 3 ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = ( ·𝑠𝑃)
3433oveqi 7359 . 2 (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋( ·𝑠𝑃)𝑌)
3512, 18, 343eqtr3g 2789 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141   ·𝑠 cvsca 17165  SubRingcsubrg 20484   mPwSer cmps 21841   mPoly cmpl 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-subg 19036  df-ring 20153  df-subrg 20485  df-psr 21846  df-mpl 21848
This theorem is referenced by:  ressply1vsca  22144
  Copyright terms: Public domain W3C validator