![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmplvsca | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressmplvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
2 | eqid 2778 | . . . . 5 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
3 | ressmpl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
4 | eqid 2778 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
5 | 1, 2, 3, 4 | mplbasss 19840 | . . . 4 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
6 | 5 | sseli 3817 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
7 | eqid 2778 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
8 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
9 | eqid 2778 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
10 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
11 | 7, 8, 2, 4, 9, 10 | resspsrvsca 19826 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
12 | 6, 11 | sylanr2 673 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
13 | 3 | fvexi 6462 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 1, 2, 3 | mplval2 19839 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
15 | eqid 2778 | . . . . 5 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) | |
16 | 14, 15 | ressvsca 16435 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘𝑈)) |
17 | 13, 16 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝐻)) = ( ·𝑠 ‘𝑈) |
18 | 17 | oveqi 6937 | . 2 ⊢ (𝑋( ·𝑠 ‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋( ·𝑠 ‘𝑈)𝑌) |
19 | fvex 6461 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
20 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
21 | eqid 2778 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
22 | 20, 7, 21 | mplval2 19839 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
23 | eqid 2778 | . . . . . 6 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) | |
24 | 22, 23 | ressvsca 16435 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘𝑆)) |
25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘𝑆) |
26 | fvex 6461 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
27 | 9, 23 | ressvsca 16435 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) = ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
29 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
30 | eqid 2778 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
31 | 29, 30 | ressvsca 16435 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
32 | 13, 31 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃) |
33 | 25, 28, 32 | 3eqtr3i 2810 | . . 3 ⊢ ( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = ( ·𝑠 ‘𝑃) |
34 | 33 | oveqi 6937 | . 2 ⊢ (𝑋( ·𝑠 ‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌) |
35 | 12, 18, 34 | 3eqtr3g 2837 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 ↾s cress 16267 ·𝑠 cvsca 16353 SubRingcsubrg 19179 mPwSer cmps 19759 mPoly cmpl 19761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-tset 16368 df-subg 17986 df-ring 18947 df-subrg 19181 df-psr 19764 df-mpl 19766 |
This theorem is referenced by: ressply1vsca 20009 |
Copyright terms: Public domain | W3C validator |