MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemlrcut Structured version   Visualization version   GIF version

Theorem madebdaylemlrcut 27817
Description: Lemma for madebday 27818. If the inductive hypothesis of madebday 27818 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 27822 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemlrcut ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Distinct variable group:   𝑦,𝑏,𝑋

Proof of Theorem madebdaylemlrcut
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltleft 27789 . . 3 (𝑋 No → ( L ‘𝑋) <<s {𝑋})
21adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( L ‘𝑋) <<s {𝑋})
3 ssltright 27790 . . 3 (𝑋 No → {𝑋} <<s ( R ‘𝑋))
43adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → {𝑋} <<s ( R ‘𝑋))
5 fveq2 6861 . . . . . . . . 9 (𝑋 = 𝑤 → ( bday 𝑋) = ( bday 𝑤))
6 eqimss 4008 . . . . . . . . 9 (( bday 𝑋) = ( bday 𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
75, 6syl 17 . . . . . . . 8 (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))
87a1i 11 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
9 ssltsep 27709 . . . . . . . . . 10 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦)
10 vex 3454 . . . . . . . . . . . 12 𝑤 ∈ V
11 breq2 5114 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑥 <s 𝑦𝑥 <s 𝑤))
1210, 11ralsn 4648 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤}𝑥 <s 𝑦𝑥 <s 𝑤)
1312ralbii 3076 . . . . . . . . . 10 (∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦 ↔ ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
149, 13sylib 218 . . . . . . . . 9 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
15 ssltsep 27709 . . . . . . . . . 10 ({𝑤} <<s ( R ‘𝑋) → ∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥)
16 breq1 5113 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦 <s 𝑥𝑤 <s 𝑥))
1716ralbidv 3157 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
1810, 17ralsn 4648 . . . . . . . . . 10 (∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
1915, 18sylib 218 . . . . . . . . 9 ({𝑤} <<s ( R ‘𝑋) → ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
2014, 19anim12i 613 . . . . . . . 8 ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
21 leftval 27778 . . . . . . . . . . . . . . 15 ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}
2221a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋})
2322raleqdv 3301 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤))
24 rightval 27779 . . . . . . . . . . . . . . 15 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
2524a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
2625raleqdv 3301 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥))
2723, 26anbi12d 632 . . . . . . . . . . . 12 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥)))
28 breq1 5113 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 <s 𝑋𝑥 <s 𝑋))
2928ralrab 3668 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
30 breq2 5114 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑋 <s 𝑧𝑋 <s 𝑥))
3130ralrab 3668 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
3229, 31anbi12i 628 . . . . . . . . . . . 12 ((∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))
3327, 32bitrdi 287 . . . . . . . . . . 11 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
3433ad2antlr 727 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
35 simplrl 776 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → 𝑤 No )
36 sltirr 27665 . . . . . . . . . . . . . 14 (𝑤 No → ¬ 𝑤 <s 𝑤)
3735, 36syl 17 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ¬ 𝑤 <s 𝑤)
38 bdayelon 27695 . . . . . . . . . . . . . . . 16 ( bday 𝑋) ∈ On
39 bdayelon 27695 . . . . . . . . . . . . . . . 16 ( bday 𝑤) ∈ On
40 ontri1 6369 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑤) ∈ On) → (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4138, 39, 40mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋))
4241con2bii 357 . . . . . . . . . . . . . 14 (( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑋) ⊆ ( bday 𝑤))
43 simplll 774 . . . . . . . . . . . . . . . 16 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
44 madebdaylemold 27816 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
4538, 43, 35, 44mp3an2i 1468 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
46 slttrine 27670 . . . . . . . . . . . . . . . . . 18 ((𝑋 No 𝑤 No ) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
4746ad2ant2lr 748 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
48 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
49 breq2 5114 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑋 <s 𝑥𝑋 <s 𝑤))
50 breq2 5114 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑤 <s 𝑥𝑤 <s 𝑤))
5149, 50imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑋 <s 𝑥𝑤 <s 𝑥) ↔ (𝑋 <s 𝑤𝑤 <s 𝑤)))
5251rspccv 3588 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5348, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5453com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋 <s 𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
55 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
56 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑋𝑤 <s 𝑋))
57 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑤𝑤 <s 𝑤))
5856, 57imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑥 <s 𝑋𝑥 <s 𝑤) ↔ (𝑤 <s 𝑋𝑤 <s 𝑤)))
5958rspccv 3588 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6055, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6160com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 <s 𝑋 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6254, 61jaod 859 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ((𝑋 <s 𝑤𝑤 <s 𝑋) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6347, 62sylbid 240 . . . . . . . . . . . . . . . 16 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6463imp 406 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤))
6545, 64syld 47 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 <s 𝑤))
6642, 65biimtrrid 243 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (¬ ( bday 𝑋) ⊆ ( bday 𝑤) → 𝑤 <s 𝑤))
6737, 66mt3d 148 . . . . . . . . . . . 12 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
6867ex 412 . . . . . . . . . . 11 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
6968expr 456 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7034, 69sylbid 240 . . . . . . . . 9 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7170impr 454 . . . . . . . 8 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
7220, 71sylanr2 683 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
738, 72pm2.61dne 3012 . . . . . 6 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → ( bday 𝑋) ⊆ ( bday 𝑤))
7473expr 456 . . . . 5 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
7574ralrimiva 3126 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
76 bdayfn 27692 . . . . . 6 bday Fn No
77 ssrab2 4046 . . . . . 6 {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No
78 fnssintima 7340 . . . . . 6 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No ) → (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤)))
7976, 77, 78mp2an 692 . . . . 5 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤))
80 sneq 4602 . . . . . . . 8 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8180breq2d 5122 . . . . . . 7 (𝑧 = 𝑤 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑤}))
8280breq1d 5120 . . . . . . 7 (𝑧 = 𝑤 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑤} <<s ( R ‘𝑋)))
8381, 82anbi12d 632 . . . . . 6 (𝑧 = 𝑤 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋))))
8483ralrab 3668 . . . . 5 (∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8579, 84bitri 275 . . . 4 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8675, 85sylibr 234 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
87 sneq 4602 . . . . . . . 8 (𝑧 = 𝑋 → {𝑧} = {𝑋})
8887breq2d 5122 . . . . . . 7 (𝑧 = 𝑋 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑋}))
8987breq1d 5120 . . . . . . 7 (𝑧 = 𝑋 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑋} <<s ( R ‘𝑋)))
9088, 89anbi12d 632 . . . . . 6 (𝑧 = 𝑋 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋))))
91 simpr 484 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 No )
922, 4jca 511 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋)))
9390, 91, 92elrabd 3664 . . . . 5 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))})
94 fnfvima 7210 . . . . 5 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
9576, 77, 93, 94mp3an12i 1467 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
96 intss1 4930 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9795, 96syl 17 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9886, 97eqssd 3967 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
99 lltropt 27791 . . . 4 ( L ‘𝑋) <<s ( R ‘𝑋)
100 eqscut 27724 . . . 4 ((( L ‘𝑋) <<s ( R ‘𝑋) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
10199, 100mpan 690 . . 3 (𝑋 No → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
102101adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
1032, 4, 98, 102mpbir3and 1343 1 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  wss 3917  {csn 4592   cint 4913   class class class wbr 5110  cima 5644  Oncon0 6335   Fn wfn 6509  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   bday cbday 27560   <<s csslt 27699   |s cscut 27701   M cmade 27757   O cold 27758   L cleft 27760   R cright 27761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763  df-left 27765  df-right 27766
This theorem is referenced by:  madebday  27818  lrcut  27822
  Copyright terms: Public domain W3C validator