Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madebdaylemlrcut Structured version   Visualization version   GIF version

Theorem madebdaylemlrcut 33662
Description: Lemma for madebday 33663. If the inductive hypothesis of madebday 33663 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 33666 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemlrcut ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Distinct variable group:   𝑦,𝑏,𝑋

Proof of Theorem madebdaylemlrcut
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltleft 33636 . . 3 (𝑋 No → ( L ‘𝑋) <<s {𝑋})
21adantl 485 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( L ‘𝑋) <<s {𝑋})
3 ssltright 33637 . . 3 (𝑋 No → {𝑋} <<s ( R ‘𝑋))
43adantl 485 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → {𝑋} <<s ( R ‘𝑋))
5 fveq2 6662 . . . . . . . . 9 (𝑋 = 𝑤 → ( bday 𝑋) = ( bday 𝑤))
6 eqimss 3950 . . . . . . . . 9 (( bday 𝑋) = ( bday 𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
75, 6syl 17 . . . . . . . 8 (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))
87a1i 11 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
9 ssltsep 33574 . . . . . . . . . 10 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦)
10 vex 3413 . . . . . . . . . . . 12 𝑤 ∈ V
11 breq2 5039 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑥 <s 𝑦𝑥 <s 𝑤))
1210, 11ralsn 4579 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤}𝑥 <s 𝑦𝑥 <s 𝑤)
1312ralbii 3097 . . . . . . . . . 10 (∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦 ↔ ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
149, 13sylib 221 . . . . . . . . 9 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
15 ssltsep 33574 . . . . . . . . . 10 ({𝑤} <<s ( R ‘𝑋) → ∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥)
16 breq1 5038 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦 <s 𝑥𝑤 <s 𝑥))
1716ralbidv 3126 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
1810, 17ralsn 4579 . . . . . . . . . 10 (∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
1915, 18sylib 221 . . . . . . . . 9 ({𝑤} <<s ( R ‘𝑋) → ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
2014, 19anim12i 615 . . . . . . . 8 ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
21 leftval 33629 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋})
2221raleqdv 3329 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤))
23 rightval 33630 . . . . . . . . . . . . . 14 (𝑋 No → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
2423raleqdv 3329 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥))
2522, 24anbi12d 633 . . . . . . . . . . . 12 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥)))
26 breq1 5038 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 <s 𝑋𝑥 <s 𝑋))
2726ralrab 3610 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
28 breq2 5039 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑋 <s 𝑧𝑋 <s 𝑥))
2928ralrab 3610 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
3027, 29anbi12i 629 . . . . . . . . . . . 12 ((∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))
3125, 30bitrdi 290 . . . . . . . . . . 11 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
3231ad2antlr 726 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
33 simplrl 776 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → 𝑤 No )
34 sltirr 33538 . . . . . . . . . . . . . 14 (𝑤 No → ¬ 𝑤 <s 𝑤)
3533, 34syl 17 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ¬ 𝑤 <s 𝑤)
36 bdayelon 33560 . . . . . . . . . . . . . . . 16 ( bday 𝑋) ∈ On
37 bdayelon 33560 . . . . . . . . . . . . . . . 16 ( bday 𝑤) ∈ On
38 ontri1 6207 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑤) ∈ On) → (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
3936, 37, 38mp2an 691 . . . . . . . . . . . . . . 15 (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋))
4039con2bii 361 . . . . . . . . . . . . . 14 (( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑋) ⊆ ( bday 𝑤))
41 simplll 774 . . . . . . . . . . . . . . . 16 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
42 madebdaylemold 33661 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
4336, 41, 33, 42mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
44 slttrine 33543 . . . . . . . . . . . . . . . . . 18 ((𝑋 No 𝑤 No ) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
4544ad2ant2lr 747 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
46 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
47 breq2 5039 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑋 <s 𝑥𝑋 <s 𝑤))
48 breq2 5039 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑤 <s 𝑥𝑤 <s 𝑤))
4947, 48imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑋 <s 𝑥𝑤 <s 𝑥) ↔ (𝑋 <s 𝑤𝑤 <s 𝑤)))
5049rspccv 3540 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5146, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5251com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋 <s 𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
53 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
54 breq1 5038 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑋𝑤 <s 𝑋))
55 breq1 5038 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑤𝑤 <s 𝑤))
5654, 55imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑥 <s 𝑋𝑥 <s 𝑤) ↔ (𝑤 <s 𝑋𝑤 <s 𝑤)))
5756rspccv 3540 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
5853, 57syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
5958com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 <s 𝑋 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6052, 59jaod 856 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ((𝑋 <s 𝑤𝑤 <s 𝑋) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6145, 60sylbid 243 . . . . . . . . . . . . . . . 16 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6261imp 410 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤))
6343, 62syld 47 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 <s 𝑤))
6440, 63syl5bir 246 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (¬ ( bday 𝑋) ⊆ ( bday 𝑤) → 𝑤 <s 𝑤))
6535, 64mt3d 150 . . . . . . . . . . . 12 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
6665ex 416 . . . . . . . . . . 11 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
6766expr 460 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
6832, 67sylbid 243 . . . . . . . . 9 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
6968impr 458 . . . . . . . 8 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
7020, 69sylanr2 682 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
718, 70pm2.61dne 3037 . . . . . 6 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → ( bday 𝑋) ⊆ ( bday 𝑤))
7271expr 460 . . . . 5 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
7372ralrimiva 3113 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
74 bdayfn 33557 . . . . . 6 bday Fn No
75 ssrab2 3986 . . . . . 6 {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No
76 fnssintima 33198 . . . . . 6 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No ) → (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤)))
7774, 75, 76mp2an 691 . . . . 5 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤))
78 sneq 4535 . . . . . . . 8 (𝑧 = 𝑤 → {𝑧} = {𝑤})
7978breq2d 5047 . . . . . . 7 (𝑧 = 𝑤 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑤}))
8078breq1d 5045 . . . . . . 7 (𝑧 = 𝑤 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑤} <<s ( R ‘𝑋)))
8179, 80anbi12d 633 . . . . . 6 (𝑧 = 𝑤 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋))))
8281ralrab 3610 . . . . 5 (∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8377, 82bitri 278 . . . 4 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8473, 83sylibr 237 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
85 sneq 4535 . . . . . . . 8 (𝑧 = 𝑋 → {𝑧} = {𝑋})
8685breq2d 5047 . . . . . . 7 (𝑧 = 𝑋 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑋}))
8785breq1d 5045 . . . . . . 7 (𝑧 = 𝑋 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑋} <<s ( R ‘𝑋)))
8886, 87anbi12d 633 . . . . . 6 (𝑧 = 𝑋 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋))))
89 simpr 488 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 No )
902, 4jca 515 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋)))
9188, 89, 90elrabd 3606 . . . . 5 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))})
92 fnfvima 6992 . . . . 5 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
9374, 75, 91, 92mp3an12i 1462 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
94 intss1 4856 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9593, 94syl 17 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9684, 95eqssd 3911 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
97 lltropt 33638 . . . 4 (𝑋 No → ( L ‘𝑋) <<s ( R ‘𝑋))
98 eqscut 33586 . . . 4 ((( L ‘𝑋) <<s ( R ‘𝑋) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
9997, 98mpancom 687 . . 3 (𝑋 No → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
10099adantl 485 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
1012, 4, 96, 100mpbir3and 1339 1 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  {crab 3074  wss 3860  {csn 4525   cint 4841   class class class wbr 5035  cima 5530  Oncon0 6173   Fn wfn 6334  cfv 6339  (class class class)co 7155   No csur 33432   <s cslt 33433   bday cbday 33434   <<s csslt 33564   |s cscut 33566   M cmade 33612   O cold 33613   L cleft 33615   R cright 33616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-wrecs 7962  df-recs 8023  df-1o 8117  df-2o 8118  df-no 33435  df-slt 33436  df-bday 33437  df-sslt 33565  df-scut 33567  df-made 33617  df-old 33618  df-left 33620  df-right 33621
This theorem is referenced by:  madebday  33663  lrcut  33666
  Copyright terms: Public domain W3C validator