MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemlrcut Structured version   Visualization version   GIF version

Theorem madebdaylemlrcut 27382
Description: Lemma for madebday 27383. If the inductive hypothesis of madebday 27383 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 27386 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemlrcut ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Distinct variable group:   𝑦,𝑏,𝑋

Proof of Theorem madebdaylemlrcut
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltleft 27354 . . 3 (𝑋 No → ( L ‘𝑋) <<s {𝑋})
21adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( L ‘𝑋) <<s {𝑋})
3 ssltright 27355 . . 3 (𝑋 No → {𝑋} <<s ( R ‘𝑋))
43adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → {𝑋} <<s ( R ‘𝑋))
5 fveq2 6888 . . . . . . . . 9 (𝑋 = 𝑤 → ( bday 𝑋) = ( bday 𝑤))
6 eqimss 4039 . . . . . . . . 9 (( bday 𝑋) = ( bday 𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
75, 6syl 17 . . . . . . . 8 (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))
87a1i 11 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
9 ssltsep 27281 . . . . . . . . . 10 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦)
10 vex 3478 . . . . . . . . . . . 12 𝑤 ∈ V
11 breq2 5151 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑥 <s 𝑦𝑥 <s 𝑤))
1210, 11ralsn 4684 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤}𝑥 <s 𝑦𝑥 <s 𝑤)
1312ralbii 3093 . . . . . . . . . 10 (∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦 ↔ ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
149, 13sylib 217 . . . . . . . . 9 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
15 ssltsep 27281 . . . . . . . . . 10 ({𝑤} <<s ( R ‘𝑋) → ∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥)
16 breq1 5150 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦 <s 𝑥𝑤 <s 𝑥))
1716ralbidv 3177 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
1810, 17ralsn 4684 . . . . . . . . . 10 (∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
1915, 18sylib 217 . . . . . . . . 9 ({𝑤} <<s ( R ‘𝑋) → ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
2014, 19anim12i 613 . . . . . . . 8 ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
21 leftval 27347 . . . . . . . . . . . . . . 15 ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}
2221a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋})
2322raleqdv 3325 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤))
24 rightval 27348 . . . . . . . . . . . . . . 15 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
2524a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
2625raleqdv 3325 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥))
2723, 26anbi12d 631 . . . . . . . . . . . 12 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥)))
28 breq1 5150 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 <s 𝑋𝑥 <s 𝑋))
2928ralrab 3688 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
30 breq2 5151 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑋 <s 𝑧𝑋 <s 𝑥))
3130ralrab 3688 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
3229, 31anbi12i 627 . . . . . . . . . . . 12 ((∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))
3327, 32bitrdi 286 . . . . . . . . . . 11 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
3433ad2antlr 725 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
35 simplrl 775 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → 𝑤 No )
36 sltirr 27238 . . . . . . . . . . . . . 14 (𝑤 No → ¬ 𝑤 <s 𝑤)
3735, 36syl 17 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ¬ 𝑤 <s 𝑤)
38 bdayelon 27267 . . . . . . . . . . . . . . . 16 ( bday 𝑋) ∈ On
39 bdayelon 27267 . . . . . . . . . . . . . . . 16 ( bday 𝑤) ∈ On
40 ontri1 6395 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑤) ∈ On) → (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4138, 39, 40mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋))
4241con2bii 357 . . . . . . . . . . . . . 14 (( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑋) ⊆ ( bday 𝑤))
43 simplll 773 . . . . . . . . . . . . . . . 16 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
44 madebdaylemold 27381 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
4538, 43, 35, 44mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
46 slttrine 27243 . . . . . . . . . . . . . . . . . 18 ((𝑋 No 𝑤 No ) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
4746ad2ant2lr 746 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
48 simprrr 780 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
49 breq2 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑋 <s 𝑥𝑋 <s 𝑤))
50 breq2 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑤 <s 𝑥𝑤 <s 𝑤))
5149, 50imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑋 <s 𝑥𝑤 <s 𝑥) ↔ (𝑋 <s 𝑤𝑤 <s 𝑤)))
5251rspccv 3609 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5348, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5453com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋 <s 𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
55 simprrl 779 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
56 breq1 5150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑋𝑤 <s 𝑋))
57 breq1 5150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑤𝑤 <s 𝑤))
5856, 57imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑥 <s 𝑋𝑥 <s 𝑤) ↔ (𝑤 <s 𝑋𝑤 <s 𝑤)))
5958rspccv 3609 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6055, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6160com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 <s 𝑋 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6254, 61jaod 857 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ((𝑋 <s 𝑤𝑤 <s 𝑋) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6347, 62sylbid 239 . . . . . . . . . . . . . . . 16 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6463imp 407 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤))
6545, 64syld 47 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 <s 𝑤))
6642, 65biimtrrid 242 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (¬ ( bday 𝑋) ⊆ ( bday 𝑤) → 𝑤 <s 𝑤))
6737, 66mt3d 148 . . . . . . . . . . . 12 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
6867ex 413 . . . . . . . . . . 11 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
6968expr 457 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7034, 69sylbid 239 . . . . . . . . 9 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7170impr 455 . . . . . . . 8 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
7220, 71sylanr2 681 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
738, 72pm2.61dne 3028 . . . . . 6 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → ( bday 𝑋) ⊆ ( bday 𝑤))
7473expr 457 . . . . 5 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
7574ralrimiva 3146 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
76 bdayfn 27264 . . . . . 6 bday Fn No
77 ssrab2 4076 . . . . . 6 {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No
78 fnssintima 7355 . . . . . 6 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No ) → (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤)))
7976, 77, 78mp2an 690 . . . . 5 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤))
80 sneq 4637 . . . . . . . 8 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8180breq2d 5159 . . . . . . 7 (𝑧 = 𝑤 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑤}))
8280breq1d 5157 . . . . . . 7 (𝑧 = 𝑤 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑤} <<s ( R ‘𝑋)))
8381, 82anbi12d 631 . . . . . 6 (𝑧 = 𝑤 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋))))
8483ralrab 3688 . . . . 5 (∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8579, 84bitri 274 . . . 4 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8675, 85sylibr 233 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
87 sneq 4637 . . . . . . . 8 (𝑧 = 𝑋 → {𝑧} = {𝑋})
8887breq2d 5159 . . . . . . 7 (𝑧 = 𝑋 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑋}))
8987breq1d 5157 . . . . . . 7 (𝑧 = 𝑋 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑋} <<s ( R ‘𝑋)))
9088, 89anbi12d 631 . . . . . 6 (𝑧 = 𝑋 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋))))
91 simpr 485 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 No )
922, 4jca 512 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋)))
9390, 91, 92elrabd 3684 . . . . 5 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))})
94 fnfvima 7231 . . . . 5 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
9576, 77, 93, 94mp3an12i 1465 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
96 intss1 4966 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9795, 96syl 17 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9886, 97eqssd 3998 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
99 lltropt 27356 . . . 4 ( L ‘𝑋) <<s ( R ‘𝑋)
100 eqscut 27295 . . . 4 ((( L ‘𝑋) <<s ( R ‘𝑋) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
10199, 100mpan 688 . . 3 (𝑋 No → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
102101adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
1032, 4, 98, 102mpbir3and 1342 1 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  wss 3947  {csn 4627   cint 4949   class class class wbr 5147  cima 5678  Oncon0 6361   Fn wfn 6535  cfv 6540  (class class class)co 7405   No csur 27132   <s cslt 27133   bday cbday 27134   <<s csslt 27271   |s cscut 27273   M cmade 27326   O cold 27327   L cleft 27329   R cright 27330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136  df-bday 27137  df-sslt 27272  df-scut 27274  df-made 27331  df-old 27332  df-left 27334  df-right 27335
This theorem is referenced by:  madebday  27383  lrcut  27386
  Copyright terms: Public domain W3C validator