MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemlrcut Structured version   Visualization version   GIF version

Theorem madebdaylemlrcut 27862
Description: Lemma for madebday 27863. If the inductive hypothesis of madebday 27863 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 27867 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemlrcut ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Distinct variable group:   𝑦,𝑏,𝑋

Proof of Theorem madebdaylemlrcut
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltleft 27834 . . 3 (𝑋 No → ( L ‘𝑋) <<s {𝑋})
21adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( L ‘𝑋) <<s {𝑋})
3 ssltright 27835 . . 3 (𝑋 No → {𝑋} <<s ( R ‘𝑋))
43adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → {𝑋} <<s ( R ‘𝑋))
5 fveq2 6876 . . . . . . . . 9 (𝑋 = 𝑤 → ( bday 𝑋) = ( bday 𝑤))
6 eqimss 4017 . . . . . . . . 9 (( bday 𝑋) = ( bday 𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
75, 6syl 17 . . . . . . . 8 (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))
87a1i 11 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
9 ssltsep 27754 . . . . . . . . . 10 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦)
10 vex 3463 . . . . . . . . . . . 12 𝑤 ∈ V
11 breq2 5123 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑥 <s 𝑦𝑥 <s 𝑤))
1210, 11ralsn 4657 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤}𝑥 <s 𝑦𝑥 <s 𝑤)
1312ralbii 3082 . . . . . . . . . 10 (∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦 ↔ ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
149, 13sylib 218 . . . . . . . . 9 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
15 ssltsep 27754 . . . . . . . . . 10 ({𝑤} <<s ( R ‘𝑋) → ∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥)
16 breq1 5122 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦 <s 𝑥𝑤 <s 𝑥))
1716ralbidv 3163 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
1810, 17ralsn 4657 . . . . . . . . . 10 (∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
1915, 18sylib 218 . . . . . . . . 9 ({𝑤} <<s ( R ‘𝑋) → ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
2014, 19anim12i 613 . . . . . . . 8 ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
21 leftval 27823 . . . . . . . . . . . . . . 15 ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}
2221a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋})
2322raleqdv 3305 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤))
24 rightval 27824 . . . . . . . . . . . . . . 15 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
2524a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
2625raleqdv 3305 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥))
2723, 26anbi12d 632 . . . . . . . . . . . 12 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥)))
28 breq1 5122 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 <s 𝑋𝑥 <s 𝑋))
2928ralrab 3677 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
30 breq2 5123 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑋 <s 𝑧𝑋 <s 𝑥))
3130ralrab 3677 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
3229, 31anbi12i 628 . . . . . . . . . . . 12 ((∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))
3327, 32bitrdi 287 . . . . . . . . . . 11 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
3433ad2antlr 727 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
35 simplrl 776 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → 𝑤 No )
36 sltirr 27710 . . . . . . . . . . . . . 14 (𝑤 No → ¬ 𝑤 <s 𝑤)
3735, 36syl 17 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ¬ 𝑤 <s 𝑤)
38 bdayelon 27740 . . . . . . . . . . . . . . . 16 ( bday 𝑋) ∈ On
39 bdayelon 27740 . . . . . . . . . . . . . . . 16 ( bday 𝑤) ∈ On
40 ontri1 6386 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑤) ∈ On) → (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4138, 39, 40mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋))
4241con2bii 357 . . . . . . . . . . . . . 14 (( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑋) ⊆ ( bday 𝑤))
43 simplll 774 . . . . . . . . . . . . . . . 16 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
44 madebdaylemold 27861 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
4538, 43, 35, 44mp3an2i 1468 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
46 slttrine 27715 . . . . . . . . . . . . . . . . . 18 ((𝑋 No 𝑤 No ) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
4746ad2ant2lr 748 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
48 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
49 breq2 5123 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑋 <s 𝑥𝑋 <s 𝑤))
50 breq2 5123 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑤 <s 𝑥𝑤 <s 𝑤))
5149, 50imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑋 <s 𝑥𝑤 <s 𝑥) ↔ (𝑋 <s 𝑤𝑤 <s 𝑤)))
5251rspccv 3598 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5348, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5453com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋 <s 𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
55 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
56 breq1 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑋𝑤 <s 𝑋))
57 breq1 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑤𝑤 <s 𝑤))
5856, 57imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑥 <s 𝑋𝑥 <s 𝑤) ↔ (𝑤 <s 𝑋𝑤 <s 𝑤)))
5958rspccv 3598 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6055, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6160com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 <s 𝑋 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6254, 61jaod 859 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ((𝑋 <s 𝑤𝑤 <s 𝑋) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6347, 62sylbid 240 . . . . . . . . . . . . . . . 16 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6463imp 406 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤))
6545, 64syld 47 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 <s 𝑤))
6642, 65biimtrrid 243 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (¬ ( bday 𝑋) ⊆ ( bday 𝑤) → 𝑤 <s 𝑤))
6737, 66mt3d 148 . . . . . . . . . . . 12 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
6867ex 412 . . . . . . . . . . 11 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
6968expr 456 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7034, 69sylbid 240 . . . . . . . . 9 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7170impr 454 . . . . . . . 8 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
7220, 71sylanr2 683 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
738, 72pm2.61dne 3018 . . . . . 6 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → ( bday 𝑋) ⊆ ( bday 𝑤))
7473expr 456 . . . . 5 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
7574ralrimiva 3132 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
76 bdayfn 27737 . . . . . 6 bday Fn No
77 ssrab2 4055 . . . . . 6 {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No
78 fnssintima 7355 . . . . . 6 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No ) → (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤)))
7976, 77, 78mp2an 692 . . . . 5 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤))
80 sneq 4611 . . . . . . . 8 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8180breq2d 5131 . . . . . . 7 (𝑧 = 𝑤 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑤}))
8280breq1d 5129 . . . . . . 7 (𝑧 = 𝑤 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑤} <<s ( R ‘𝑋)))
8381, 82anbi12d 632 . . . . . 6 (𝑧 = 𝑤 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋))))
8483ralrab 3677 . . . . 5 (∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8579, 84bitri 275 . . . 4 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8675, 85sylibr 234 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
87 sneq 4611 . . . . . . . 8 (𝑧 = 𝑋 → {𝑧} = {𝑋})
8887breq2d 5131 . . . . . . 7 (𝑧 = 𝑋 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑋}))
8987breq1d 5129 . . . . . . 7 (𝑧 = 𝑋 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑋} <<s ( R ‘𝑋)))
9088, 89anbi12d 632 . . . . . 6 (𝑧 = 𝑋 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋))))
91 simpr 484 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 No )
922, 4jca 511 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋)))
9390, 91, 92elrabd 3673 . . . . 5 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))})
94 fnfvima 7225 . . . . 5 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
9576, 77, 93, 94mp3an12i 1467 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
96 intss1 4939 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9795, 96syl 17 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9886, 97eqssd 3976 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
99 lltropt 27836 . . . 4 ( L ‘𝑋) <<s ( R ‘𝑋)
100 eqscut 27769 . . . 4 ((( L ‘𝑋) <<s ( R ‘𝑋) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
10199, 100mpan 690 . . 3 (𝑋 No → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
102101adantl 481 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
1032, 4, 98, 102mpbir3and 1343 1 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  wss 3926  {csn 4601   cint 4922   class class class wbr 5119  cima 5657  Oncon0 6352   Fn wfn 6526  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746   M cmade 27802   O cold 27803   L cleft 27805   R cright 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810  df-right 27811
This theorem is referenced by:  madebday  27863  lrcut  27867
  Copyright terms: Public domain W3C validator