Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madebdaylemlrcut Structured version   Visualization version   GIF version

Theorem madebdaylemlrcut 34079
Description: Lemma for madebday 34080. If the inductive hypothesis of madebday 34080 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 34083 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemlrcut ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Distinct variable group:   𝑦,𝑏,𝑋

Proof of Theorem madebdaylemlrcut
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltleft 34054 . . 3 (𝑋 No → ( L ‘𝑋) <<s {𝑋})
21adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( L ‘𝑋) <<s {𝑋})
3 ssltright 34055 . . 3 (𝑋 No → {𝑋} <<s ( R ‘𝑋))
43adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → {𝑋} <<s ( R ‘𝑋))
5 fveq2 6774 . . . . . . . . 9 (𝑋 = 𝑤 → ( bday 𝑋) = ( bday 𝑤))
6 eqimss 3977 . . . . . . . . 9 (( bday 𝑋) = ( bday 𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
75, 6syl 17 . . . . . . . 8 (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))
87a1i 11 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋 = 𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
9 ssltsep 33985 . . . . . . . . . 10 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦)
10 vex 3436 . . . . . . . . . . . 12 𝑤 ∈ V
11 breq2 5078 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑥 <s 𝑦𝑥 <s 𝑤))
1210, 11ralsn 4617 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤}𝑥 <s 𝑦𝑥 <s 𝑤)
1312ralbii 3092 . . . . . . . . . 10 (∀𝑥 ∈ ( L ‘𝑋)∀𝑦 ∈ {𝑤}𝑥 <s 𝑦 ↔ ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
149, 13sylib 217 . . . . . . . . 9 (( L ‘𝑋) <<s {𝑤} → ∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤)
15 ssltsep 33985 . . . . . . . . . 10 ({𝑤} <<s ( R ‘𝑋) → ∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥)
16 breq1 5077 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦 <s 𝑥𝑤 <s 𝑥))
1716ralbidv 3112 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
1810, 17ralsn 4617 . . . . . . . . . 10 (∀𝑦 ∈ {𝑤}∀𝑥 ∈ ( R ‘𝑋)𝑦 <s 𝑥 ↔ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
1915, 18sylib 217 . . . . . . . . 9 ({𝑤} <<s ( R ‘𝑋) → ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥)
2014, 19anim12i 613 . . . . . . . 8 ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))
21 leftval 34047 . . . . . . . . . . . . . . 15 ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}
2221a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋})
2322raleqdv 3348 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤))
24 rightval 34048 . . . . . . . . . . . . . . 15 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
2524a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
2625raleqdv 3348 . . . . . . . . . . . . 13 (𝑋 No → (∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥 ↔ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥))
2723, 26anbi12d 631 . . . . . . . . . . . 12 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥)))
28 breq1 5077 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 <s 𝑋𝑥 <s 𝑋))
2928ralrab 3630 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
30 breq2 5078 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑋 <s 𝑧𝑋 <s 𝑥))
3130ralrab 3630 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥 ↔ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
3229, 31anbi12i 627 . . . . . . . . . . . 12 ((∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑧 <s 𝑋}𝑥 <s 𝑤 ∧ ∀𝑥 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))
3327, 32bitrdi 287 . . . . . . . . . . 11 (𝑋 No → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
3433ad2antlr 724 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) ↔ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))))
35 simplrl 774 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → 𝑤 No )
36 sltirr 33949 . . . . . . . . . . . . . 14 (𝑤 No → ¬ 𝑤 <s 𝑤)
3735, 36syl 17 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ¬ 𝑤 <s 𝑤)
38 bdayelon 33971 . . . . . . . . . . . . . . . 16 ( bday 𝑋) ∈ On
39 bdayelon 33971 . . . . . . . . . . . . . . . 16 ( bday 𝑤) ∈ On
40 ontri1 6300 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑤) ∈ On) → (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4138, 39, 40mp2an 689 . . . . . . . . . . . . . . 15 (( bday 𝑋) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝑋))
4241con2bii 358 . . . . . . . . . . . . . 14 (( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑋) ⊆ ( bday 𝑤))
43 simplll 772 . . . . . . . . . . . . . . . 16 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
44 madebdaylemold 34078 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
4538, 43, 35, 44mp3an2i 1465 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 ∈ ( O ‘( bday 𝑋))))
46 slttrine 33954 . . . . . . . . . . . . . . . . . 18 ((𝑋 No 𝑤 No ) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
4746ad2ant2lr 745 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 ↔ (𝑋 <s 𝑤𝑤 <s 𝑋)))
48 simprrr 779 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥))
49 breq2 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑋 <s 𝑥𝑋 <s 𝑤))
50 breq2 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑤 <s 𝑥𝑤 <s 𝑤))
5149, 50imbi12d 345 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑋 <s 𝑥𝑤 <s 𝑥) ↔ (𝑋 <s 𝑤𝑤 <s 𝑤)))
5251rspccv 3558 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5348, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑋 <s 𝑤𝑤 <s 𝑤)))
5453com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋 <s 𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
55 simprrl 778 . . . . . . . . . . . . . . . . . . . 20 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤))
56 breq1 5077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑋𝑤 <s 𝑋))
57 breq1 5077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (𝑥 <s 𝑤𝑤 <s 𝑤))
5856, 57imbi12d 345 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑥 <s 𝑋𝑥 <s 𝑤) ↔ (𝑤 <s 𝑋𝑤 <s 𝑤)))
5958rspccv 3558 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6055, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 ∈ ( O ‘( bday 𝑋)) → (𝑤 <s 𝑋𝑤 <s 𝑤)))
6160com23 86 . . . . . . . . . . . . . . . . . 18 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑤 <s 𝑋 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6254, 61jaod 856 . . . . . . . . . . . . . . . . 17 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → ((𝑋 <s 𝑤𝑤 <s 𝑋) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6347, 62sylbid 239 . . . . . . . . . . . . . . . 16 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤)))
6463imp 407 . . . . . . . . . . . . . . 15 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (𝑤 ∈ ( O ‘( bday 𝑋)) → 𝑤 <s 𝑤))
6545, 64syld 47 . . . . . . . . . . . . . 14 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (( bday 𝑤) ∈ ( bday 𝑋) → 𝑤 <s 𝑤))
6642, 65syl5bir 242 . . . . . . . . . . . . 13 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → (¬ ( bday 𝑋) ⊆ ( bday 𝑤) → 𝑤 <s 𝑤))
6737, 66mt3d 148 . . . . . . . . . . . 12 ((((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) ∧ 𝑋𝑤) → ( bday 𝑋) ⊆ ( bday 𝑤))
6867ex 413 . . . . . . . . . . 11 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
6968expr 457 . . . . . . . . . 10 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑥 <s 𝑋𝑥 <s 𝑤) ∧ ∀𝑥 ∈ ( O ‘( bday 𝑋))(𝑋 <s 𝑥𝑤 <s 𝑥)) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7034, 69sylbid 239 . . . . . . . . 9 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤))))
7170impr 455 . . . . . . . 8 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (∀𝑥 ∈ ( L ‘𝑋)𝑥 <s 𝑤 ∧ ∀𝑥 ∈ ( R ‘𝑋)𝑤 <s 𝑥))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
7220, 71sylanr2 680 . . . . . . 7 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → (𝑋𝑤 → ( bday 𝑋) ⊆ ( bday 𝑤)))
738, 72pm2.61dne 3031 . . . . . 6 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ (𝑤 No ∧ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)))) → ( bday 𝑋) ⊆ ( bday 𝑤))
7473expr 457 . . . . 5 (((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) ∧ 𝑤 No ) → ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
7574ralrimiva 3103 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
76 bdayfn 33968 . . . . . 6 bday Fn No
77 ssrab2 4013 . . . . . 6 {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No
78 fnssintima 33676 . . . . . 6 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No ) → (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤)))
7976, 77, 78mp2an 689 . . . . 5 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤))
80 sneq 4571 . . . . . . . 8 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8180breq2d 5086 . . . . . . 7 (𝑧 = 𝑤 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑤}))
8280breq1d 5084 . . . . . . 7 (𝑧 = 𝑤 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑤} <<s ( R ‘𝑋)))
8381, 82anbi12d 631 . . . . . 6 (𝑧 = 𝑤 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋))))
8483ralrab 3630 . . . . 5 (∀𝑤 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ( bday 𝑋) ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8579, 84bitri 274 . . . 4 (( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ↔ ∀𝑤 No ((( L ‘𝑋) <<s {𝑤} ∧ {𝑤} <<s ( R ‘𝑋)) → ( bday 𝑋) ⊆ ( bday 𝑤)))
8675, 85sylibr 233 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ⊆ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
87 sneq 4571 . . . . . . . 8 (𝑧 = 𝑋 → {𝑧} = {𝑋})
8887breq2d 5086 . . . . . . 7 (𝑧 = 𝑋 → (( L ‘𝑋) <<s {𝑧} ↔ ( L ‘𝑋) <<s {𝑋}))
8987breq1d 5084 . . . . . . 7 (𝑧 = 𝑋 → ({𝑧} <<s ( R ‘𝑋) ↔ {𝑋} <<s ( R ‘𝑋)))
9088, 89anbi12d 631 . . . . . 6 (𝑧 = 𝑋 → ((( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋)) ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋))))
91 simpr 485 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 No )
922, 4jca 512 . . . . . 6 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋)))
9390, 91, 92elrabd 3626 . . . . 5 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))})
94 fnfvima 7109 . . . . 5 (( bday Fn No ∧ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))} ⊆ No 𝑋 ∈ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
9576, 77, 93, 94mp3an12i 1464 . . . 4 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
96 intss1 4894 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9795, 96syl 17 . . 3 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}) ⊆ ( bday 𝑋))
9886, 97eqssd 3938 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))
99 lltropt 34056 . . . 4 (𝑋 No → ( L ‘𝑋) <<s ( R ‘𝑋))
100 eqscut 33999 . . . 4 ((( L ‘𝑋) <<s ( R ‘𝑋) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
10199, 100mpancom 685 . . 3 (𝑋 No → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
102101adantl 482 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ((( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋 ↔ (( L ‘𝑋) <<s {𝑋} ∧ {𝑋} <<s ( R ‘𝑋) ∧ ( bday 𝑋) = ( bday “ {𝑧 No ∣ (( L ‘𝑋) <<s {𝑧} ∧ {𝑧} <<s ( R ‘𝑋))}))))
1032, 4, 98, 102mpbir3and 1341 1 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  wss 3887  {csn 4561   cint 4879   class class class wbr 5074  cima 5592  Oncon0 6266   Fn wfn 6428  cfv 6433  (class class class)co 7275   No csur 33843   <s cslt 33844   bday cbday 33845   <<s csslt 33975   |s cscut 33977   M cmade 34026   O cold 34027   L cleft 34029   R cright 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-left 34034  df-right 34035
This theorem is referenced by:  madebday  34080  lrcut  34083
  Copyright terms: Public domain W3C validator